
2.5-PC: A Faster and Non-Blocking Atomic
Commit Protocol

Adrian Berding
Department of Computer Science

University of Michigan
Ann Arbor, USA

aberding@umich.edu

Sanjay Sri Vallabh Singapuram
Department of Computer Science

University of Michigan
Ann Arbor, USA

singam@umich.edu

Drake Svoboda
Department of Computer Science

University of Michigan
Ann Arbor, USA
drakes@umich.edu

Abstract—We present 2.5PC, a non-blocking atomic commit
protocol. 2.5PC is a modification of 3PC for synchronous settings
with reliable network channels. 2.5PC waits for the same number
of message delays as 2PC while also being non-blocking in the
presence of non-total failures. We provide an informal proof
of 2.5PC’s correctness, and formally prove the safety of 2.5PC
during normal operation using Dafny. Although 2.5PC relies on
impractical network settings, the proof of 2.5PC improves on the
current understanding of non-blocking atomic-commit protocols.
Using this understanding, we show a practical improvement
to 3PC regarding the coordinators timeout delay for the ACK
messages during the third phase of 3PC. This improvement
has practical implications for other protocols that use empty
acknowledge messages.

Index Terms—atomic commitment, two-phase commit, three-
phase commit, non-blocking commit protocols, TLA, Hoare-logic
verification

I. INTRODUCTION

Atomic Commitment has been a main-stay problem in
distributed systems since it’s inception. Several real-world
systems rely on atomic commit protocols (ACPs) for con-
sistency [1]–[4]. Two widely used ACPs are 2-phase commit
(2PC) and 3-phase commit (3PC) [5]. There are many versions
of 2PC and 3PC, this paper will focus on those versions
that operate under the assumption of synchronous message
channels. As the names suggest, 3PC takes an additional phase
to reach termination during normal execution. This additional
phase allows 3PC to be non-blocking. That is, 3PC does not
block in the presence of non-total failures, whereas 2PC’s
progress can stall in the presence of partial failures. For this
reason, we call 3PC a non-blocking ACP. Despite 3PC being
non-blocking, 2PC is favored in most practical systems since
it takes one less phase (i.e. one less round trip time). In this
paper we discuss why 3PC needs an additional phase to be
non-blocking. We then describe 2.5PC, a new ACP that is
both non-blocking and takes only 2 phases.

2.5PC is a modification of 3PC that relies on reliable mes-
sage channels. The assumption of reliable channels is generally
impractical. Despite having limited practical application, the
development of 2.5PC improves upon the current understand-
ing of why 3PC is non-blocking. Using this understanding,
we present one potential optimizations for 3PC that applies in
more practical network settings.

Section VIII describes a machine verification of the safety
of 2.5PC during normal execution. Machine verification is
the gold standard for proving the correctness of distributed
protocols. Distributed systems are often infinitely subtle and
can be exceedingly difficult to reason about. In fact, the
original specification of 3PC is incorrect in certain cases of
multiple processes failures [6]. Machine verification can be
used to illuminate and eliminate such errors.

II. RELATED WORK

IronFleet shows that formal machine verification is practi-
cal at the scale of real-world implementations of distributed
systems [7]. An older yet established system called TLA+
[8], has been used to specify and verify distributed systems
for over a decade, including on Amazon’s AWS services.
IronFleet improves over TLA+ by enabling the specification to
also act as an implementation and also proves certain liveness
properties. mCRL2, another specification language, was used
to model and verify 2PC and 3PC under different network
conditions [6].

III. OVERVIEW OF ATOMIC COMMITMENT AND 3PC

This section briefly goes over Atomic Commitment and
3PC. Consider a transaction T whose execution relies on
several distributed processes S1, S2, .., Sn. T can only be
executed successfully if each process commits to executing the
transaction. If T is committed by some processes, but aborted
by others, then T will be terminated inconsistently. An atomic
commit protocol (ACP) is needed to ensure that T is either
committed at every process, or aborted at every process, even
if processes are allowed to fail. Concretely, a correct ACP
satisfies the following properties [9]:

AC1: All processes that reach a decision reach the same one.
AC2: A process cannot reverse its decision after it has reached

one.
AC3: The COMMIT decision can only be reached if all pro-

cesses voted YES.
AC4: If there are no failures and all processes voted YES, then

the decision will be to COMMIT.
AC5: If all failures are repaired and there are no more failures,

then all processes will eventually decide.



Aborted Uncertain Pre-commited Committed
Aborted X X × ×
Uncertain X X X ×
Pre-committed × X X X
Committed × × X X

Fig. 1. NB Property Coexistence Matrix. Check-marks indicate that two
processes in the given states can coexist. The NB property disallows the
coexistence of uncertain and committed processes.

Additionally, an ACP is considered non-blocking if oper-
ational processes can always reach a decision by examining
their local states, even when other processes have failed.

3PC satisfies AC1-AC5 and is non-blocking in the presence
of partial failures. 3PC designates a single coordinator pro-
cesses who oversees the execution of the protocol for the other
participating processes. The execution of 3PC is as follows:

1) The coordinator broadcasts VOTE-REQ to each partici-
pant

2) Each participant receives a VOTE-REQ and responds
with a YES vote or a NO vote. If a participant votes
NO, it decides ABORT.

3) If the coordinator receives all YES votes, it broadcasts
PRE-COMMIT. If the coordinator receives a NO vote, it
decides ABORT and broadcasts ABORT.

4) Each participant receives a PRE-COMMIT or an ABORT.
If a participant receives ABORT, it decides ABORT and
terminates. If a participant receives PRE-COMMIT, it
responds with an ACK.

5) The coordinator receives the ACKs, decides COMMIT,
and broadcasts COMMIT.

6) Participants receive COMMIT and decide COMMIT.

IV. WHY IS 3PC NON-BLOCKING?

A processes uncertainty period is the period of time after
that processes has voted YES, but before it has received a
PRE-COMMIT or ABORT message. During this period, the
processes is uncertain of what decision will be reached. 3PC
is non-blocking because it satisfies the following non-blocking
NB property.

NB: If an operational processes is in its uncertainty
period, then no processes has decided COMMIT.

The ACK message received in step 5 informs the coordinator
that each processes has exited its uncertainty period. After
receiving these messages, it becomes safe for the coordinator
to decide COMMIT.

This version of 3PC operates under the assumption of
synchrony. Synchrony allows for a processes to become certain
of a another process’s death after some timeout delay. After
step 3, the coordinator sets a timeout of 2δ where δ is the
upper bound on message delivery. If the coordinator fails to
receive an ACK message from each process within 2δ time,
it can be assured that any uncertain process has died and can
safely COMMIT without violating NB.

Due to the NB property, if an uncertain process discovers
the death of the coordinator, the uncertain process can reason

that the dead coordinator has not decided COMMIT; therefore,
the uncertain processes do not need to wait for the dead
coordinator to recover to make progress.

We consider a weaker non-blocking (WNB):

WNB: If a process has decided COMMIT, each alive
uncertain processes will exit it’s uncertainty period within
θ time.

We define θ as the lower bound on how long it takes to be
certain of another processes death. In synchronous systems,
where timeouts are used to detect death, θ depends on δ, the
upper bound for message delivery.

The WNB property allows for the coexistence of committed
processes and alive and uncertain processes; however, if an
alive and uncertain processes learns of the death of another
processes, the alive and uncertain process knows that the dead
processes has not decided COMMIT. If an ACP satisfies the
WNB property, then alive and uncertain processes do not need
to wait for the recovery of dead processes to make progress.

V. 2.5PC

We propose 2.5 phase commit (2.5PC), a non-blocking
atomic-commit protocol that satisfies the WNB property. We
modify the coordinator in 3PC to send COMMIT messages
immediately after sending PRE-COMMIT messages, thus elim-
inating the ACK message and saving 1 round of communica-
tions. 2.5PC operates under the assumption of synchrony and
reliable channels. Additionally, a process can only learn of
the death of another process by means of a timeout (that is,
Falcon [10] or something similar isn’t used).

2.5PC follows a similar structure to 3PC and adopts all of
its timeout actions. The execution of 2.5PC is as follows:

1) The coordinator broadcasts VOTE-REQ to each partici-
pant

2) Each participant receives a VOTE-REQ and responds
with a YES vote or a NO vote. If a participant votes
NO, it decides ABORT.

3) If the coordinator receives all YES votes, it broad-
casts PRE-COMMIT, decides COMMIT, then broadcasts
COMMIT. If the coordinator receives a NO vote, it
decides ABORT and broadcasts ABORT to the processes
that voted YES.

4) Each participant receives a PRE-COMMIT, COMMIT or
ABORT message. If a participant receives ABORT, it
decides ABORT and terminates. If a participant receives
PRE-COMMIT, it enters the pre-committed state and
waits for the COMMIT message from the coordinator.
If a participant receives COMMIT, it decides COMMIT
and terminates.

5) Participants waiting to receive the COMMIT message
receive COMMIT and decide COMMIT.

Processes can timeout at steps (2), (3), (4), and (5). If a
processes times-out in step (2), that processes can indepen-
dently decide ABORT since no processes has yet to decide
COMMIT. If the coordinator times out in step (3), it can
also independently decide ABORT and broadcast ABORT to



the processes that voted YES. A process that times-out in
steps (4) and (5) cannot independently decide. Instead a
new coordinator is elected and the processes participate in
3PC’s termination protocol described in [9]. This termination
protocol satisfies the NB property and therefore the WNB
property.

If the coordinator receives all YES votes in step (3), why
does it bother sending PRE-COMMIT if it is going to send
COMMIT anyway? The purpose of the PRE-COMMIT message
is to ensure that the WNB property is maintained. After
sending a vote to the coordinator, a processes sets a timeout
for 3δ and expects to receive a message from the coordinator
within that time. It chooses 3δ because there might still be a
VOTE-REQ message in flight at the time of sending the vote.
Each VOTE-REQ can take at most δ time to arrive. Each subse-
quent vote message will take at most δ time. And the resulting
decision will take at most δ time, thus, 3δ. When the final
YES vote arrives in step (3), the coordinator can reason that
the earliest a processes set its timeout was 2δ time ago. From
the perspective of the coordinator, the lower bound on when
any processes can timeout is the remaining δ time. Due to our
assumption of reliable channels, the coordinator can guarantee
that each alive and uncertain processes will exit its uncertainty
period within δ time by sending a PRE-COMMIT message to
every-process. After sending PRE-COMMIT to each process,
the coordinator broadcasts COMMIT. When a process receives
a COMMIT message in step (4) or (5), it can reason that every
alive and uncertain processes has a PRE-COMMIT message
in flight. That is, if the coordinator died while broadcasting
COMMIT, each uncertain processes will exit its uncertainty
period before it learns of the coordinator’s death. Thus, the
process that received the COMMIT message can safely commit
without violating the WNB property.

VI. INFORMAL PROOF OF 2.5PC

In this section we sketch an informal proof of the cor-
rectness of 2.5PC that draws on the functional equivalence
between the WNB and NB properties. The NB property
is trivially stronger than the WNB property since the NB
property does not allow for the coexistence of committed
processes and alive and uncertain processes.

Since 2.5PC borrows much of it’s protocol from 3PC, its
correctness is predicated on the correctness of 3PC. 3PC and
2.5PC only differ in a single scenario when a process is
uncertain while another process has decided COMMIT. All
other possible states are covered under the old non-blocking
property and the correctness of 3PC. Specifically, if any
process decides COMMIT, we must ensure that any uncertain
process will never decide ABORT and will eventually decide
COMMIT.

Lemma 1. If a coordinator decides COMMIT in step (4), no
participant would have decided ABORT and every operational
process will eventually decide COMMIT

Proof. In the case where the coordinator does not die, then
the coordinator will send a COMMIT message to each process.

Fig. 2. 2.5PC

From our network assumptions, each alive processes will
receive the COMMIT message and decide COMMIT. Since the
coordinator has decided COMMIT, it has received a YES votes
from each processes. Thus, no processes has decided ABORT
and the coordinator does not send an ABORT message.

In the case where the coordinator fails, since it has decided
COMMIT, it has sent a PRE-COMMIT message to each pro-
cesses. From our network assumptions, each processes will
receive a PRE-COMMIT message within δ time. When the
coordinator sends PRE-COMMIT, the earliest that a processes
could timeout on the coordinator is also δ. Each process
that does not received a COMMIT message will timeout
on the coordinator only after receiving the PRE-COMMIT
message and will enter 3PC’s termination protocol in the
PRE-COMMITTED state. From the correctness of the ter-
mination protocol, each processes will eventually decide
COMMIT.

Lemma 2. If anyone has decided COMMIT, each dead uncer-
tain process will not decide ABORT after recovering

Proof. When an uncertain process recovers, there are two
cases that need to be addressed.

The first case is a non-total failure. From Lemma 1, there
exists an alive process that can eventually inform the recover-
ing process of a COMMIT decision.

The second case is total failure. From the WNB property,
when an uncertain process dies, it has not learned of the death
of a process that has decided COMMIT. That is, the uncertain



process retains any process that could have decided COMMIT
in its UP-Set. When such an uncertain process recovers, it will
either learn of a COMMIT decision from processes that have
already recovered, or block until a committed process in its
UP-Set recovers.

VII. THE ACKNOWLEDGEMENT MESSAGE

In this section we propose a small optimization to 3PC
that works even in the presence of unreliable channels. One
subtle aspect of 3PC is during step (5)—when the coordinator
is waiting for ACKs—the coordinator will perform the same
action whether it receives all ACKs or times-out. This is
because either timing-out or receiving an ACK ensures the
same thing—that the coordinator can safely decide COMMIT
since the process has either exited its uncertainty period or
crashed.

Before going into why the ACK message exists, it is
important to understand how synchrony is guaranteed over
un-reliable channels. In the presence of un-reliable channels,
processes re-send their message multiple times ensuring—
with extremely high probability—that at least one message
will be delivered within δ time. This is how TCP guarantees
reliable packet delivery. In 3PC, a coordinator sets a timeout
for 2δ after sending a PRE-COMMIT message. If an alive
coordinator times-out waiting for an ACK message after 2δ,
it can be certain that the process it timed-out on has crashed.
It is important that the coordinator is alive to conduct this
reasoning because it needed to have been alive long enough to
continuously re-send its message. If an alive coordinator waits
2δ time, it can safely reason that either the message it sent has
been reliably delivered, or the receiving process has died. If
an alive coordinator waits only a single δ time, it can also
safely reason that either the message it sent has been reliably
delivered, or the receiving processes has died and dropped
the message. In either case, after δ time, it would be safe
for the coordinator to decide COMMIT without violating the
NB property. This is exactly the optimization we propose, the
coordinator does not need to wait 2δ before deciding COMMIT.

So then why is there an ACK messages in 3PC? The coor-
dinator could simply wait δ time after sending PRE-COMMIT
without expecting an ACK message in return. The ACK mes-
sages will likely arrive well before δ time has elapsed, so
it is likely faster to send the ACK message than to have the
coordinator always wait a full δ time.

VIII. MACHINE PROOF OF 2.5PC

We prove the safety of 2.5PC inductively using Dafny, a
programming language that supports formal specification 1.
We model the global state of 2.5PC as a sequence of Nodes
(participant processes) and the messages that have been sent
between them. We also model each state transition that the
global state can undertake as an atomic protocol step. For
simplicity, we only allow one processes to update its state
during a global state transition. This is the approach taken

1https://gitlab.eecs.umich.edu/drakes/2.5-phase-commit

0 datatype LS_State = LS_State(environment:PCEnvironment,
servers:map<EndPoint,Node>)

1

2 predicate LS_Init(s:LS_State, config:Config)
3 {
4 LEnvironment_Init(s.environment)
5 && (forall index :: 0 <= index < |config| ==>

NodeInit(s.servers[config[index]], index,
config))

6 }

Fig. 3. Initial State Predicate. The environment variable models a
synchronous network environment. The servers variable contains the set
of participating processes. Line 4 indicates that the environment is in a valid
initial state (no messages have been sent, etc.). Line 5 indicates that each
participating processes is in a valid initial state (the processes hasn’t decided,
etc.).

0 predicate NodeDie(prev:Node, next:Node)
1 {
2 prev.is_alive && !next.is_alive
3 && prev == next.(is_alive := prev.is_alive)
4 }

Fig. 4. Node Death Transition Predicate. prev represents the previous state
of a Node (a participant process) and next is the state of the node after the
transition. Line 3 ensures that only the is_alive property is changed during
the transition.

by IronFleet [7] and can be shown to be equivalent to proofs
of real systems. Figure 3 shows how the global state of the
system is modeled in Dafny. Figure 4 shows one possible state
transition for a single process.

By defining the initial global state of our protocol and
each possible state transition, we have reasonably defined
the operation of 2.5PC (in an inductive manner) without
implementing it.

We prove correctness of 2.5PC inductively by first express-

0 predicate AC1(state: LS_State) {
1 forall i, j :: i in state.servers && j in

state.servers
2 ==> (state.servers[i].state == Committed ==>

state.servers[j].state != Aborted)
3 }
4

5 predicate AC2(state: LS_State, state’: LS_State) {
6 forall i :: i in state.servers
7 ==> i in state’.servers
8 && (state.servers[i].state == Aborted ==>

state’.servers[i].state == Aborted)
9 && (state.servers[i].state == Committed ==>

state’.servers[i].state == Committed)
10 }
11

12 predicate AC3(state: LS_State) {
13 forall i, j :: (i in state.servers && j in

state.servers)
14 ==> (state.servers[i].state == Committed ==>

state.servers[j].vote == Yes)
15 }

Fig. 5. Safety Properties: Safety properties of ACP modeled in Dafny. AC2
compares multiple states where state’ comes after state.



0 lemma Init(state: LS_State)
1 requires LS_Init(state)
2 ensures AC1(state)
3 ensures AC3(state)
4 {}

Fig. 6. Simple Proof. Proof that the initial state doesn’t violate AC1, AC2,
or AC3. Note that AC2 is trivially satisfied for any state snapshot.

0 lemma InvIsStronger(state: LS_State)
1 requires Inv(state)
2 ensures AC1(state) && AC3(state)
3 {}
4

5 lemma Init(state: LS_State)
6 requires LS_Init(state)
7 ensures Inv(state)
8 {}
9

10 lemma Induce(state: LS_State, state’: LS_State)
11 requires Inv(state)
12 requires LS_Next(state, state’)
13 ensures Inv(state’)
14 ensures AC2(state, state’)
15 {}

Fig. 7. Proof of 2.5PC. The Inv predicate encapsulates each inductive
invariant. First we prove that Inv → (AC1 && AC3). We then show that
the initial state satisfies Inv. Finally, we show that any transition from a state
that satisfies Inv also satisfies Inv and AC2.

ing the Atomic Commit (AC) safety properties in Dafny. With
these safety properties implemented, we can begin to write
simple proofs such as the proof in Figure 7. To prove the
inductive step, we show that given a safe state, any valid
transition from that state is also safe. The difficulty in proving
the inductive step is that all states that satisfy AC1-AC3 may
not be reachable from the initial state. We define a series
of inductive invariants to prune out un-reachable safe states
that could lead to unsafe states. One such invariant is that a
COMMIT message can not be in flight if there is a process that
has decided ABORT. We must also show that our initial state
also satisfies each inductive invariant. A complete abstraction
of our proof is in figure 7.

At the time of this paper, we have formally verified the
correctness of 2.5PC under normal operation without the
termination protocol. We have learned that Dafny programs
are very hard to debug and verification often takes a significant
time to run; however, it is extremely satisfying when the
terminal reads "Dafny program verifier finished
with 87 verified, 0 errors."

IX. CONCLUSION

We present 2.5PC, a new atomic commit protocol that
operates under the assumption of synchronous and reliable
channels. 2.5PC is able to complete in only two phases of mes-
sages during normal operation while also being non-blocking
in the presence of non-total failures. We formally prove the
safety of 2.5PC in the normal case using a combination of TLA

and Hoare-logic verification. Our proof is written in Dafny, a
programming language that supports formal verification.

a) Future Work: We have left the machine proof of the
safety of the the termination protocol to future work.
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