
COMMUNICATION EFFICIENT DISTRIBUTED SGD

Drake Svoboda Anshul Aggarwal

ABSTRACT
We study communication efficient distributed SGD algorithms. Synchronized SGD requires significant network
bandwidth for gradient exchange and is not robust to node slowdowns and network delays. Thus, many strategies
have been proposed to mitigate both synchronization and network costs to speed-up training. We propose two new
communication efficient algorithms: (1) staggered EASGD and (2) significance compression. Staggered EASGD is
an optimization to elastic-averaging SGD that more efficiently utilizes available network bandwidth. Significance
compression is a gradient sparcification method that compresses the size of gradients before transmission. We
evaluate our methods on vision and NLP benchmarks and find 0.1-8.8× and 0.9-1.8× increase in training
throughput for staggered EASGD and significance compression respectively when compared to synchronized
SGD on commodity 1Gbps network links with minimal performance degradation. We additionally evaluate the
performance of both the EASGD algorithm and approximate-synchronous parallel synchronization model on
reinforcement learning workloads.

1 INTRODUCTION

Stochastic gradient descent (SGD) is the backbone of mod-
ern state-of-the-art supervised machine learning. Due to
the increasing size of deep-neural network architectures
and datasets, it has become imperative to distribute SGD
across many nodes and parallelize gradient computation
and aggregation. Synchronous SGD is widely used for
distributed training and can reduce the computation time
for the forward-backward passes and allow for increases
in the amount of data processed per iteration. Although
synchronous SGD can reduce computation time, it exposes
SGD to node slowdowns and network delays. The additional
synchronization and network costs of gradient exchange can
dwarf computation savings. These problems are amplified
in heterogeneous hardware or geo-distributed settings.

Our goal in this project is to investigate strategies for reduc-
ing the systems costs of distributed SGD. In particular, we
focus on (1) elastic-averaging SGD (Zhang et al., 2015) and
(2) approximate synchronous parallel (Hsieh et al., 2017).
Elastic-averaging SGD (EASGD) is a communication effi-
cient SGD algorithm that reduces the frequency with which
parameter updates are communicated between the nodes.
Approximate synchronous parallel (ASP) is a synchroniza-
tion model that eliminates insignificant communication to
reduce network costs. Inspired by these works, we addition-
ally investigate two new techniques:

1. Staggered EASGD. We propose an optimization to
EASGD that staggers the communication periods of
each layer in a neural network. This amortizes the com-
munication cost and eliminates network bursts thereby

reducing network delays and speeding up training.

2. Significance Compression. We use the significance
filter from ASP as a gradient compression in the syn-
chronized all-reduce setting.

In section 3, we describe both staggered EASGD and signif-
icance compression. In section 4, we evaluate performance
on vision and NLP workloads. Additionally, in section 4.1
we evaluate the performance of EASGD and ASP on several
reinforcement learning workloads.

2 RELATED WORK

Two popular frameworks for data-parallel SGD are param-
eter server and all-reduce. In both schemes, each parallel
worker computes gradients on a mini-batch of training ex-
amples for each training iteration; these gradients are aggre-
gated and used to update a shared set of parameters. Syn-
chronizing the parallel workers and aggregating the gradi-
ents is costly; training speed is limited by the slowest worker
and gradient aggregation requires high network bandwidth.
Much work has gone into reducing these costs (Wang &
Joshi, 2019; Jayarajan et al., 2019; Ho et al., 2013; Li et al.,
2014; Zhang et al., 2015; Hsieh et al., 2017; Alistarh et al.,
2017; Lin et al., 2020).

Many works have propose flexible consistency models to
speed things up (Ho et al., 2013; Zhang et al., 2015; Hsieh
et al., 2017; Alistarh et al., 2017; Lin et al., 2020). These
algorithms modify the computation of SGD and incur an
accuracy penalty as a result. Total asynchronous paral-
lel (otherwise known as Hogwild! (Niu et al., 2011)) re-

Communication Efficient Distributed SGD

moves synchronization barriers all together and allows each
parallel worker to continue running with best effort com-
munication and a stale or inaccurate view of the shared
parameters (Chilimbi et al., 2014). Like Hogwild!, stale-
synchronous parallel (SSP) (Ho et al., 2013) removes syn-
chronization barriers but bounds the number of iterations
the slowest worker may be behind the fastest worker. Simi-
larly, approximate-synchronous parallel (ASP) (Hsieh et al.,
2017) bounds the difference between the globally shared
parameters and a worker’s view of the parameters. Empir-
ically, these synchronization schemes do not slow down
convergence too much per iteration, but significantly in-
crease throughput. Mitliagkas et al. show that asynchrony
introduces an implicit momentum similar to the explicit mo-
mentum used by many optimizers; this may partially explain
this phenomenon (Mitliagkas et al., 2016).

Other approaches simply limit the frequency with which the
workers are synchronized and updates are aggregated. In
federated learning, parallel workers train for multiple iter-
ations before transmitting their updates to a central server
which takes a federated average of the updates (McMahan
et al., 2017). Like federated learning, elastic-averaging SGD
(EASGD) (Zhang et al., 2015) allows each worker to locally
take τ SGD steps before communicating it’s updated param-
eters with a parameter server; the parameter server updates
the global parameters by taking an elastic average. The
asynchronous variant of EASGD further removes synchro-
nization barriers and is proven to be stable and empirically
gives good results (Zhang et al., 2015). AdaComm (Wang
& Joshi, 2019) is a similar algorithm that only periodically
averages gradients every τ training iterations; Wang & Joshi
show that reducing τ over-time improves the convergence
rate.

Gradient compression methods use either a lossless or lossy
compression on the gradients before transmission (Renggli
et al., 2019; Alistarh et al., 2017; Vogels et al., 2019). For
example, QSGD (Alistarh et al., 2017) reduces the number
of bits used to represent the gradients and PowerSGD (Vo-
gels et al., 2019) communicates a low-rank approximation
of the gradients. A subset of gradient compression methods
known as gradient sparcification only select a sparse subset
of gradient components with the highest magnitude to be
transmitted (Alistarh et al., 2018; Lin et al., 2020). Gradients
which are not transmitted are accumulated and eventually
become large enough to be transmitted. Gradient sparci-
fication is closely related to asynchronous SGD; gradient
components which are filtered out are delayed and become
stale. The staleness of these updates is implicitly bounded
by the selection criteria. Using this observation, Alistarh
et al. prove that gradient specification methods provide
convergence guarantees for both convex and non-convex
objectives (Alistarh et al., 2018).

Other approaches efficiently parallelize computation with
transmission by scheduling network communication to op-
timally overlap with computation (Jayarajan et al., 2019;
Peng et al., 2019). These approaches do not modify the com-
putation of synchronized SGD and therefore do not incur
an accuracy penalty, however, they often do not achieve the
speed ups of other methods. Priority-based Parameter Prop-
agation (P3) (Jayarajan et al., 2019) ensures that parameters
that must be read first in the forward pass are prioritized for
transmission. ByteScheduler (Peng et al., 2019) similarly
prioritizes transmission of gradients in earlier layers. Ad-
ditionally, the authors show that prioritization in this way
achieves an optimal network schedule.

3 METHOD

In this section we describe both staggered EASGD and sig-
nificance compression. Our implementations are available
on github.1

3.1 Staggered EASGD

In this section we describe an optimization to EASGD that
more efficiently parallelizes communication with the for-
ward and backward computations of DNNs. EASGD is
a distributed SGD algorithm that reduces communication
cost by limiting the frequency with which parameters are
synchronized with a parameter server (Zhang et al., 2015).
Algorithm 1 shows the algorithm for asynchronous EASGD.
The frequency with which the parameters are synchronized
is called the communication period and is defined by the
hyper-parameter τ . Our key insight is that there is a net-
work burst every τ iterations when the condition on line 4
of algorithm 1 is met; during other iterations, the network is
completely unused. Thus, a network delay is caused every
τ iterations and the network is under-utilized otherwise. We
alleviate this problem by partitioning the parameters into
chunks and staggering their communication periods. This
amortizes the communication costs over the τ iterations that
make up the communication period. In our case, we train
DNNs and partition the network parameters by layer. Syn-
chronizing the parameters of each layer is done in parallel
to both the backwards and forwards passes of the previous
layers. We call EASGD with our optimization staggered
EASGD. Figure 1 shows a visualization of our optimization
for a three layer network and a communication period of
2. A small speed-up is achieved in figure 1(b) since the
transmission of layer 2 causes no delay and the transmission
of layer 1 does not compete for network bandwidth with
layer 2. In practice, this optimization should achieve the
largest relative speed-up when transmitting the entire set of
parameters exhausts the network bandwidth causing delay

1https://github.com/drakesvoboda/
DistributedTrainingExperiments.

https://github.com/drakesvoboda/DistributedTrainingExperiments
https://github.com/drakesvoboda/DistributedTrainingExperiments

Communication Efficient Distributed SGD

Time ⟶

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

L3

L2

L1

L3 L2 L1 ← Delay → L1 L2 L3 L3 L2 L1 L1 L2 L3 L3 L2 L1 ← Delay → L1 L2 L3 L3 L2 L1

Backwards 0 Forwards 1 Backwards 1 Forwards 2 Backwards 2 Forwards 3 Backwards 3

 Forward Computation Backward Computation Parameter Synchornization

(a) EASGD synchronization

Time ⟶

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

L3

L2

L1

L3 L2 L1 ← Delay → L1 L2 L3 L3 L2 L1 L1 L2 L3 L3 L2 L1 ← Delay → L1 L2 L3 L3 L2 L1 L1 L2 L3 L3

Backwards 0 Forwards 1 Backwards 1 Forwards 2 Backwards 2 Forwards 3 Backwards 3 Forwards 4

 Forward Computation Backward Computation Parameter Synchornization

(b) Staggered EASGD synchronization

Figure 1. Parameter synchronization for a 3 layer network with (a)
EASGD and (b) staggered EASGD. The communication interval is
set to 2—that is, synchronization occurs every-other SGD iteration.
For staggered EASGD, the communication interval of layer 2 is
offset by one iteration.

as seen in time-steps 5-8 of figure 1(a). In cases where
the number of parameters is low and network bandwidth is
sufficient, we should not observe much speed-up. Note that
staggered EASGD is not mathematically equivalent to stan-
dard EASGD. In section 4 we show that staggered EASGD
gives empirically similar performance to standard EASGD
on our tested workloads.

Algorithm 1: Asynchronous EASGD: Processing
by worker p and the master

1 x̃ is initialized randomly, xp = x̃, tp = 0;
2 repeat
3 x← xp;
4 if τ divides tp then
5 xp ← xp − α(x− x̃);
6 x̃← x̃+ α(x− x̃);
7 end
8 xp ← xp − ηGp

tp(x);
9 tp ← tp + 1;

10 until forever;

We have implemented EASGD with a sharded parame-
ter server using pytorch’s RPC framework. The model’s
parameters are split by layer and each layer is fur-
ther split into chunks of 100,000 parameters. These
chunks are evenly distributed to each parameter server
shard. Chunking each layer eliminates bottlenecks caused
by a server shard being assigned a disproportionately
large layer. Pytorch’s register forward hook and
register backward hook methods are used to exe-

cute arbitrary functions before the forward computation
and after the backward computation of a layer. For each
layer, we register a backwards hook that transmits the layers
parameters to the parameter server every communication
period and a forward hook that blocks until the communica-
tion with the parameter server is complete. Transmission is
non-blocking and happens in parallel to the backwards and
forward computation of earlier layers. The performance of
staggered EASGD is evaluated in section 4.

3.2 Significance Compression

Drawing inspiration from the similarity between gradient
sparcification and asynchronous SGD, we borrow the sig-
nificance filter from ASP (Hsieh et al., 2017) and use it as a
gradient compression. The significance filter is used to con-
vert each gradient update to a sparse gradient by selecting
components with large magnitude. The sparse gradient is
then aggregated across the workers using all-reduce. This
limits bandwidth since we are only sending the most im-
portant updates. The gradient components which are not
transmitted are aggregated locally until eventually they are
large enough in magnitude to be transmitted. Other gradient
sparcification techniques (Lin et al., 2020) use only the gra-
dient component’s magnitude as a heuristic for significance;
as in (Hsieh et al., 2017), we use the significance filter. The
significance filter has two components, a significance func-
tion and a significance threshold. A gradient component
is deemed significant if its significance is larger than the
threshold. We use the gradient’s magnitude relative to the
current value (|Update

V alue |) as the significance function. Algo-
rithm 2 shows the algorithm for significance compression
for a single worker. The variable accpt is used to store the
locally aggregated gradient; once the significance of this
value passes the significance threshold thr, it is transmit-
ted and reset to 0. The variable vt stores the view of the
model parameters; this view is the same for each worker.
The function Gp

t (·) computes the gradient with respect to
the model parameters vt. Note that when thr = 0, this
algorithm reduces to synchronized all-reduce SGD.

We have implemented significance compression using py-
torch communication primitives. Pytorch’s all-reduce primi-
tive supports reduction of sparse tensors.

4 EXPERIMENTS

We compare the performance of significance compres-
sion (SigComp), staggered EASGD, standard EASGD,
and synchronized SGD as implemented in pytorch’s
DistributedDataParallel class (DDP). For both
EASGD methods, we use the asynchronous variant as de-
scribed by Zhang et al.. To evaluate the methods we train
three models on two datasets: a 7 layer MLP with 3,465,514
trainable parameters and 2 layer CNN with 40,450 parame-

Communication Efficient Distributed SGD

Algorithm 2: Significance Compression: Process-
ing by worker p

1 for t = 0,1,... do
2 accpt ← εpt−1 + ηGp

t (vt−1);
3 gpt ← accpt � (|accpt |/|v

p
t−1| > thr);

4 εpt ← accpt − g
p
t ;

5 all-reduce gpt : gt ←
∑N

p=1 g
p
t /N ;

6 vt ← vt−1 − gt;
7 end

ters, and a 1 layer LSTM with 5,668,781 parameters. The
MLP and CNN are trained on the SVHN image classifi-
cation dataset (Netzer et al., 2011) The LSTM is trained
on the Wall Street Journal (WSJ) part-of-speech tagging
dataset (Marcus et al., 1993). We train on a 3 node cluster
of Intel Xeon E5-2660 V3 10 core CPUs; each node is con-
nected via 1Gbps link. This bandwidth is on the low-end
for network infrastructure in modern cloud services. We
use a low bandwidth as it highlights the performance of our
proposed methods. For both EASGD variants, we set the
communication period to τ = 20. For significance com-
pression we set the significance threshold to thr = 0.01.
Training is done using vanilla SGD with a learning rate
of 1e − 2. For the SVHN benchmark we train for a total
of 100,000 iterations, for the WSJ benchmark we train for
70,000 iterations. In both cases we use a batch size of of 16
examples and compute a validation accuracy every 10,000
iterations. For each benchmark, validation accuracy is plot-
ted with respect to time in figure 3. The average throughput
of each method are reported in figure 2.

Standard EASGD and staggered EASGD gave near identi-
cal performance in terms of accuracy. Both methods caused
a drop in validation accuracy of roughly 1 and 4 percentage
points compared to synchronized SGD on the SVHN and
WSJ benchmarks respectively. For the MLP and LSTM
experiments, staggered EASGD had a small throughput
advantage of about 2% and 8% respectively; however, it
had a marginal loss in throughput of roughly 0.5% for the
small CNN model. This performance is expected as the
CNN has significantly fewer parameters than the MLP and
LSTM. Staggered EASGD should give better relative speed-
ups when the forward and backward computations are fast
relative to the time to transmit parameters and transmis-
sion of the entire set of parameters exhausts the network
bandwidth; thus, we hypothesize that our optimization will
give more significant performance improvements for larger
models trained on the GPU. Our experiments validate this
hypothesis since staggered EASGD achieved a throughput
advantage for the larger MLP and LSTM models.

Significance compression gives a speed up over synchro-
nized SGD on the MLP and LSTM models, however, it is

much slower on the CNN benchmark. Gradient compres-
sion techniques require additional computation to compress
the gradient; in the CNN experiment, the added cost of
compressing the gradient is larger than the reduced commu-
nication cost. Significance compression caused roughly a 1
percentage point drop in accuracy on SVHN but caused no
performance degradation on the WSJ benchmark.

4.1 Reinforcement Learning

We additionally evaluate the performance of EASGD and
ASP on two reinforcement learning workloads. We have
implemented the EASGD and ASP algorithms as agents
in the RLLib library (Liang et al., 2018). RLLib is a rein-
forcement learning library built on top of Ray (Moritz et al.,
2017). Our implementations are available on github.2

We compare our implementations of ASP and EASGD
against existing implementations of PPO, A3C, and IM-
PALA.

The PPO algorithm (Schulman et al., 2017) was introduced
by OpenAI in 2017 and quickly became one of the most
popular RL methods usurping Deep-Q learning. It involves
collecting a small batch of experiences by interacting with
the environment and using that batch to update a decision-
making policy. Once the policy is updated, the experiences
are thrown away and a new batch is collected. RLLib’s
implementation of distributed PPO is a fully synchronized;
each worker always maintains the most up to date version of
the policy. Thus, PPO tends to have low throughput in dis-
tributed environments. Reinforcement learning algorithms
tend to be very sample inefficient and in some cases require
training on tens of millions of examples before convergence.
Making matters worse, data collection requires computation-
ally expensive environment simulation; thus, distributing
the computation is imperative.

To speed things up, many algorithms have been proposed
that use similar ideas to the asynchronous and communica-
tion efficient methods described previously. Asynchronous
Advantage Actor Critic (A3C) (Wang et al., 2016) removes
synchronization barriers between the workers and allows
each worker to sample the environment and apply gradient
updates to a global model without locks. Thus, updates
occur with respect to a stale version of the model. Stale-
ness hurts RL algorithms in two ways. Firstly, like with
supervised-learning, gradients computed with respect to a
stale model are inaccurate. Additionally, with reinforcement
learning, data gathering requires inferencing the model; thus,
a stale model adds additional inaccuracies when the training
data is gathered. IMPALA, or the Importance Weighted Ac-
tor Learner Architecture (Espeholt et al., 2018), is similarly

2https://github.com/drakesvoboda/
SysForAIProject.

https://github.com/drakesvoboda/SysForAIProject
https://github.com/drakesvoboda/SysForAIProject

Communication Efficient Distributed SGD

asynchronous but introduces a novel V-trace algorithm that
corrects for data gathered using a stale view of the model.

Our implementations of EASGD and ASP modify the com-
munication of A3C. For EASGD, each worker only infre-
quently updates the global set of parameters by taking an
elastic-average. For ASP, each worker only transmits the
significant updates; we additionally implement the mirror-
clock from Gaia (Hsieh et al., 2017) to ensure that the slow-
est worker does not get too far behind the fastest worker.

We test our implementations on a CloudLab cluster with 3
worker nodes. We train on three OpenAI gym environments:
Acrobot, Cart-Pole, and QBert. For each environment, we
evaluate performance using both 5 and 10 worker threads
per node. All algorithms train for a total of 1 hour on
each environment. Training plots are shown in figure 4 and
training throughput is shown in figure 5.

A3C has the highest throughput of the methods; our imple-
mentations of EASGD and ASP follow closely behind. PPO
and IMPALA have significantly lower throughput compared
to other algorithms in all of the experiments. IMPALA does
not train well in any of our experiments and gives the lowest
mean reward in all of our tests. IMPALA is designed for
achieving high throughput for hardware configurations with
few accelerator resources but many CPU resources; thus,
this is an unfair comparison. For the Acrobot environment,
PPO, A3C, ASP and EASGD all train well and all of them
approach the maximum possible reward. Although PPO has
a significantly lower throughput, it converges quickly with
respect to wall time in the Cart-Pole experiments. This sug-
gests that the inaccuracies introduced by the asynchronous
methods harm convergence in this case.

While ASP was able to achieve the maximum possible mean
reward in Acrobot, it fails to converge to an optimal policy
for Cart-Pole and is unstable during training; this suggests a
dependence between the particular environment and training
stability. PPO still performs the best achieving the highest
reward quickly.

The QBert experiment shows the advantage of the asyn-
chronous methods. PPO’s throughput is far too low for this
environment and it fails to train entirely. For QBert, we
found that training was very unstable for the asynchronous
methods and their convergence was very sensitive to ini-
tialization. In the 5 worker case, EASGD significantly out-
performs the other methods. In the 10 worker case, A3C
performs best. We believe that this performance is some-
what arbitrary as it is not consistent between runs. The
performance on the other environments was far more con-
sistent.

LSTM MLP CNN
0

200

400

600

800

1000

1200

1400

1600

Th
ro

ug
hp

ut
 (e

x/
s)

54 92

1529

192

883

1709

156 176

857

208

899

1701
DDP
SigComp (Ours)
EASGD
Staggered EASGD (Ours)

Figure 2. Training throughput (examples per second).

5 DISCUSSION AND FUTURE WORK

There is a lot of future work to be done and this project
could take multiple different directions.

Overall, we should study these algorithms on more learning
problems and different hardware. Our staggered EASGD
optimization did not achieve much speed-up, but there may
be a more apparent speed-up with different configurations.
Further, our staggering optimization could be used for many
methods that limit the frequency with which parameters are
transmitted including federated learning (McMahan et al.,
2017) and AdaComm (Wang & Joshi, 2019).

A very important thing to test empirically is significance
compression’s performance compared to other gradient spar-
cification methods. This comparison is crucial, but we ran
out of time to run experiments to include in this report. Fur-
ther, we believe that Alistarh et al.’s proof of convergence for
other gradient sparcification methods can be used to provide
convergence guarantees for significance compression.

Other asynchronous SGD and gradient sparcification meth-
ods employ clever tricks when using explicit momentum
terms (Lin et al., 2020; Mitliagkas et al., 2016). The authors
of EASGD show empirically that it performs best with Nes-
terov momentum (Zhang et al., 2015). We did not train with
momentum, for future work, we should tune the momentum
parameter and relate the optimal momentum with the signif-
icance threshold value or communication period. Following
Mitliagkas et al.’s finding that asynchronous SGD induces
momentum, we predict that the optimal momentum value
will decrease as the significance threshold or communication
period increases.

EASGD and Meta Learning As an aside, there is an ap-
parent relationship between EASGD the the first-order meta
learning algorithm REPTILE (Nichol et al., 2018). As a
brief introduction, meta learning methods attempt to learn a

Communication Efficient Distributed SGD

0 2000 4000 6000 8000 10000 12000 14000 16000
Wall Time (s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n
Ac

cu
ra

cy

DDP
SigComp (Ours)
EASGD
Staggered EASGD (Ours)

(a) MLP

0 250 500 750 1000 1250 1500 1750
Wall Time (s)

0.85

0.86

0.87

0.88

0.89

0.90

0.91

Va
lid

at
io

n
Ac

cu
ra

cy

DDP
SigComp (Ours)
EASGD
Staggered EASGD (Ours)

(b) CNN

0 2500 5000 7500 10000 12500 15000 17500
Wall Time (s)

0.30

0.35

0.40

0.45

0.50

0.55

Va
lid

at
io

n
Ac

cu
ra

cy

DDP
SigComp (Ours)
EASGD
Staggered EASGD (Ours)

(c) LSTM

Figure 3. Validation accuracy during training for (a) and 7 layer MLP (b) a 2 layer CNN and (c) a 1 layer LSTM.

0 500 1000 1500 2000 2500 3000 3500
Wall Time (s)

500

400

300

200

100

Ep
iso

de
 R

ew
ar

d
M

ea
n

A3C
ASP
EASGD
IMPALA
PPO

(a) Acrobot 5 workers

0 500 1000 1500 2000 2500 3000 3500
Wall Time (s)

150

200

250

300

350

400

450

500

Ep
iso

de
 R

ew
ar

d
M

ea
n

A3C
ASP
EASGD
IMPALA
PPO

(b) Cart Pole 5 workers

0 500 1000 1500 2000 2500 3000 3500
Wall Time (s)

0

500

1000

1500

2000

2500

Ep
iso

de
 R

ew
ar

d
M

ea
n

A3C
ASP
EASGD
IMPALA
PPO

(c) QBert 5 workers

0 500 1000 1500 2000 2500 3000 3500
Wall Time (s)

500

400

300

200

100

Ep
iso

de
 R

ew
ar

d
M

ea
n

A3C
ASP
EASGD
IMPALA
PPO

(d) Acrobot 10 workers

0 500 1000 1500 2000 2500 3000 3500
Wall Time (s)

100

200

300

400

500

Ep
iso

de
 R

ew
ar

d
M

ea
n

A3C
ASP
EASGD
IMPALA
PPO

(e) Cart Pole 10 workers

0 500 1000 1500 2000 2500 3000 3500
Wall Time (s)

0

200

400

600

800

1000

1200
Ep

iso
de

 R
ew

ar
d

M
ea

n
A3C
ASP
EASGD
IMPALA
PPO

(f) QBert 10 workers

Figure 4. Reinforcement learning training.

Carpole (10) Cartpole (5) Acrobat (10) Acrobat (5) QBert (10) QBert (5)
0

2000

4000

6000

8000

10000

12000

14000

Th
ro

ug
hp

ut
 (e

x/
s)

13848

9644
10537

5989

1944
1304

8950

7074

5786
4939

930
1844

7834
7250 7287

4995

1109 10731379 1359 1316 1298
436 433

946 771 743 752
16 14

A3C
ASP
EASGD
IMPALA
PPO

Figure 5. RL training throughput (examples per second).

Communication Efficient Distributed SGD

learning algorithm itself that can quickly specialize to new
tasks. This usually means learning some initialization to a
DNN that can achieve high accuracy on some task by fine-
tuning for a small number of iterations. REPTILE works by
maintaining a set of master parameters (x̃), sampling a par-
ticular task i and training for a fixed number of iterations on
that task to achieve an updated set of parameters (xi), then
taking an elastic average to update the master parameters
(x̃ ← x̃ + α(xi − x̃)). When multiple tasks are sampled
and trained in parallel, this is equivalent to EASGD. There
may be interesting insights to gain by analyzing EASGD
as a meta learning algorithm; we leave this to future work.
Chen, Luo et al. have studied the performance of the meta
learning algorithms MAML, FOMAML, and Meta-SGD in
a federated learning setting (Chen et al., 2019). It would be
interesting to study the performance of elastic-averaging as
a drop-in replacement in this setting.

REFERENCES

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. Qsgd: Communication-efficient sgd via gradient
quantization and encoding, 2017.

Alistarh, D., Hoefler, T., Johansson, M., Khirirat, S., Kon-
stantinov, N., and Renggli, C. The convergence of sparsi-
fied gradient methods, 2018.

Chen, F., Luo, M., Dong, Z., Li, Z., and He, X. Feder-
ated meta-learning with fast convergence and efficient
communication, 2019.

Chilimbi, T., Suzue, Y., Apacible, J., and Kalyanaraman,
K. Project adam: Building an efficient and scalable
deep learning training system. In 11th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 14), pp. 571–582, Broomfield, CO,
October 2014. USENIX Association. ISBN 978-1-
931971-16-4. URL https://www.usenix.org/
conference/osdi14/technical-sessions/
presentation/chilimbi.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dun-
ning, I., Legg, S., and Kavukcuoglu, K. IMPALA: scal-
able distributed deep-rl with importance weighted actor-
learner architectures. CoRR, abs/1802.01561, 2018. URL
http://arxiv.org/abs/1802.01561.

Ho, Q., Cipar, J., Cui, H., Kim, J. K., Lee, S., Gibbons,
P. B., Gibson, G. A., Ganger, G. R., and Xing, E. P. More
effective distributed ml via a stale synchronous parallel
parameter server. In Proceedings of the 26th International
Conference on Neural Information Processing Systems -
Volume 1, NIPS’13, pp. 1223–1231, Red Hook, NY, USA,
2013. Curran Associates Inc.

Hsieh, K., Harlap, A., Vijaykumar, N., Konomis, D.,
Ganger, G. R., Gibbons, P. B., and Mutlu, O. Gaia: Geo-
distributed machine learning approaching LAN speeds. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pp. 629–647, Boston,
MA, March 2017. USENIX Association. ISBN 978-1-
931971-37-9. URL https://www.usenix.org/
conference/nsdi17/technical-sessions/
presentation/hsieh.

Jayarajan, A., Wei, J., Gibson, G., Fedorova, A., and
Pekhimenko, G. Priority-based parameter propa-
gation for distributed dnn training. In Talwalkar,
A., Smith, V., and Zaharia, M. (eds.), Proceedings
of Machine Learning and Systems, volume 1, pp.
132–145, 2019. URL https://proceedings.
mlsys.org/paper/2019/file/
d09bf41544a3365a46c9077ebb5e35c3-Paper.
pdf.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the parameter
server. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation, OSDI’14,
pp. 583–598, USA, 2014. USENIX Association. ISBN
9781931971164.

Liang, E., Liaw, R., Moritz, P., Nishihara, R., Fox, R., Gold-
berg, K., Gonzalez, J. E., Jordan, M. I., and Stoica, I.
Rllib: Abstractions for distributed reinforcement learn-
ing, 2018.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, W. J.
Deep gradient compression: Reducing the communica-
tion bandwidth for distributed training, 2020.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.
Building a large annotated corpus of english: The penn
treebank. Comput. Linguist., 19(2):313–330, June 1993.
ISSN 0891-2017.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data, 2017.

Mitliagkas, I., Zhang, C., Hadjis, S., and Ré, C. Asynchrony
begets momentum, with an application to deep learning,
2016.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R.,
Liang, E., Paul, W., Jordan, M. I., and Stoica, I. Ray:
A distributed framework for emerging AI applications.
CoRR, abs/1712.05889, 2017. URL http://arxiv.
org/abs/1712.05889.

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
http://arxiv.org/abs/1802.01561
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
https://proceedings.mlsys.org/paper/2019/file/d09bf41544a3365a46c9077ebb5e35c3-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/d09bf41544a3365a46c9077ebb5e35c3-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/d09bf41544a3365a46c9077ebb5e35c3-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/d09bf41544a3365a46c9077ebb5e35c3-Paper.pdf
http://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1712.05889

Communication Efficient Distributed SGD

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. 2011.

Nichol, A., Achiam, J., and Schulman, J. On first-order
meta-learning algorithms, 2018.

Niu, F., Recht, B., Re, C., and Wright, S. J. Hogwild!:
A lock-free approach to parallelizing stochastic gradient
descent, 2011.

Peng, Y., Zhu, Y., Chen, Y., Bao, Y., Yi, B., Lan, C., Wu, C.,
and Guo, C. A generic communication scheduler for dis-
tributed dnn training acceleration. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
SOSP ’19, pp. 16–29, New York, NY, USA, 2019. Asso-
ciation for Computing Machinery. ISBN 9781450368735.
doi: 10.1145/3341301.3359642. URL https://doi.
org/10.1145/3341301.3359642.

Renggli, C., Ashkboos, S., Aghagolzadeh, M., Alistarh,
D., and Hoefler, T. Sparcml: High-performance sparse
communication for machine learning, 2019.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Vogels, T., Karimireddy, S. P., and Jaggi, M. Powersgd:
Practical low-rank gradient compression for distributed
optimization. CoRR, abs/1905.13727, 2019. URL http:
//arxiv.org/abs/1905.13727.

Wang, J. and Joshi, G. Adaptive communication strategies
to achieve the best error-runtime trade-off in local-update
sgd. In Talwalkar, A., Smith, V., and Zaharia, M. (eds.),
Proceedings of Machine Learning and Systems, volume 1,
pp. 212–229, 2019. URL https://proceedings.
mlsys.org/paper/2019/file/
c8ffe9a587b126f152ed3d89a146b445-Paper.
pdf.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R.,
Kavukcuoglu, K., and de Freitas, N. Sample effi-
cient actor-critic with experience replay. arXiv preprint
arXiv:1611.01224, 2016.

Zhang, S., Choromanska, A., and LeCun, Y. Deep learning
with elastic averaging sgd. In Proceedings of the 28th In-
ternational Conference on Neural Information Processing
Systems - Volume 1, NIPS’15, pp. 685–693, Cambridge,
MA, USA, 2015. MIT Press.

https://doi.org/10.1145/3341301.3359642
https://doi.org/10.1145/3341301.3359642
http://arxiv.org/abs/1905.13727
http://arxiv.org/abs/1905.13727
https://proceedings.mlsys.org/paper/2019/file/c8ffe9a587b126f152ed3d89a146b445-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/c8ffe9a587b126f152ed3d89a146b445-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/c8ffe9a587b126f152ed3d89a146b445-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/c8ffe9a587b126f152ed3d89a146b445-Paper.pdf

