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Abstract

We train a DistilBERT transformer for the
task of emoji prediction. We model emoji
prediction as an information retrieval prob-
lem at the level of individual tokens. This
allows our model to predict context aware
emojis at different locations in an input
text. We train on a large corpus of
tweets. We compare the performance of
our model against a base-line logistic re-
gression model. The transformer signifi-
cantly outperforms the linear model and is
able to predict a more diverse set of emojis.

1 Introduction

Emojis are textual characters that are com-
monly used in casual settings to represent dif-
ferent emotions, people, or things in a pictorial
format. Currently, the Unicode Standard (Con-
sortium, 2020), which is a widely adopted char-
acter encoding scheme, defines a set of 1,809
emojis. There are over 18,000 including mod-
ifiers such as skin tone and gender. It can
be somewhat cumbersome for users to navi-
gate all of these emojis, given only basic search
functions. Emoj-Al aims to help text messag-
ing users by predicting emojis that best suit
the user’s needs with the goal of predicting a
diverse set of context aware emojis.

In this paper we train a DistilBERT trans-
former for emoji prediction and compare its
performance to a logistic regression baseline.
Recent works in emoji prediction focus either
on predicting emojis at the level of a complete
text or suggesting emojis using RNNs (similar
to next-word prediction). We model the task
of emoji prediction as an information retrieval
problem at the level of individual tokens. This
allows our DistilBERT model to recall a rich
set of emojis that consider differing contextual
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information at each token. We imagine our
model could be integrated into a custom An-
droid keyboard that decreases the amount of
time users spend searching for emojis.

2 Related Work

Ramaswamy et al. use LSTM to suggest emojis
to users as they type (Ramaswamy et al., 2019).
Their model prompts the user with single emoji
suggestions when it determines if an emoji is
appropriate.

Barbieri et al. use multimodal input data to
predict one or more emojis for an instagram
post (Barbieri et al., 2018). Their model takes
as input an instagram post containing a picture
and description and outputs one or more emoji
predictions. This model predicts emojis at the
level of complete posts rather than at the token
level.

3 Dataset and Problem Definition

Our dataset is a corpus of 1.8 million English
tweets from the EmojifyData-EN Twitter cor-
pus available from Kaggle. Each tweet in the
corpus contains at least one in-line emoji. We
select subsets of 490,000 tweets and 10,000
tweets for training and testing respectively.

The Unicode consortium defines a complete
set of 1,809 emojis. We select a subset of these
emojis for prediction. We exclude all emo-
jis with gender, skin-tone or hair-color mod-
ifiers. These emojis are transformed to their
non-modified counterparts. For example, the
emojis & ds and d§ are each replaced
with . We also exclude country flags, letter,
and number emojis; tweets containing these
emojis are not included in the training or test-
ing data. This leaves a subset of 1,344 emojis
that we consider; call this subset FE.
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Figure 1: Distribution of the 15 most frequent
emojis in the training data.

The distribution of emojis is highly imbal-
anced. The top 100 most frequent emojis in
the training data make up almost 70% of all
emoji usage. The most popular emoji (&) is
responsible for almost 8% of usage on its own.
Several emojis do not have support in either
the training set or the validation set. Figure 1
shows the distribution of the top 15 most used
emojis.

Some of the tweets in the corpus are not in-
dicative of normal casual text communication.
Many tweets are either spam, advertisements,
or obvious bot tweets. This skews the distribu-
tion of emojis and hinders our models ability
to learn useful relationships between text and
relevant emojis.

Problem Definition We model the task of
emoji prediction as a separate information re-
trieval problem at each individual token. That
is, we expect our models to retrieve a set rele-
vant emojis for each token. The in-line emojis
in the training data are used as a learning sig-
nal to determine which emojis are relevant. If
a token is followed by a sequence of emojis (or
single emoji), then those emojis are considered
relevant for that token and are taken as ground
truth. If a token is not followed by any emojis,
we do not infer that there are no relevant emo-
jis for that token. Instead, we consider that
token as having some hidden set of relevant
emojis that may or may not be empty. During
training, we do not penalize the model for mak-
ing predictions at such tokens. Since emojis
are sparse in our input, this design decision
ensures the model do not regress to predicting
no emojis for each token. This encourages our
model to over-predict emojis, which is benefi-
cial for our particular use case. We imagine

this model could be packaged in a mobile de-
vice’s keyboard. If while the user is composing
or editing a text message, they wish to type
an emoji, they would switch to the emoji view
where they would be presented with the set of
predicted emojis for the token their text cursor
is positioned at. If the user has switched to
the emoji view, this is an indication that the
set of relevant emojis for the position of their
cursor is non-empty. That is, in the common
use case, our model will not be asked to make
predictions for tokens that do not have relevant
emojis.

For a token ¢, our model predicts an |E| di-
mensional prediction vector p; where p;[j] €
[0, 1] is interpreted as the probability emoji j is
relevant for token i. We consider the model as
predicting emoji j if p;[j] > € for some thresh-
old € € [0,1]. We can rank the models predic-
tions by sorting p;[j] and giving the emoji with
the largest p;[j] the lowest rank and so on. A
perfect model would have p;[j] > € for all rele-
vant emojis and p;[j] < e for all non-relevant
emojis.

4 Methods

We train two different models for the task of
emoji prediction: a bag-of-words (BoW) logis-
tic regression model and a DistilBERT trans-
former model (Sanh et al., 2019).

4.1 DistilBERT Transformer Model

We use PyTorch (Paszke et al., 2019) and
Hugging Face library to define and train our
model. The Hugging Face library is an NLP li-
brary that interfaces with PyTorch and supplies
several pre-trained model architectures with
their accompanying tokenizers. Transform-
ers were proposed for sequence-to-sequence
tasks (Vaswani et al., 2017). Our model trans-
forms a sequence of tokens to a sequence of
emoji predictions. That is, our model outputs
a set of emoji predictions for each token in the
input.

Figure 2 shows our model’s architecture. The
transformer produces a hidden state a; for each
token ¢; in the input. Each a; is passed through
a shared fully-connected classification head fol-
lowed by the sigmoid activation function. This
produces the |E| dimensional prediction vector
p; for each token.
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Figure 2: Transformer for Emoji Prediction.
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Why can’t I fall asleep? DB~
I love you Y'YV
Who wants to buy me a pizza? @& Q@O
I left the stove on... ol ool < X<

Table 1: Sample transformer predictions. Note
that the model makes a set of predictions for each
token in the input, however, we only present pre-
dictions for the final token. Predictions for entire
sequences can be found in table 3.

We choose DistilBERT (Sanh et al., 2019)
(a smaller variant of the popular BERT trans-
former (Devlin et al., 2018)) as the transformer
in our model. Before training, DistilBERT is
initialized with pre-trained weights. The Hug-
ging Face library supplies a DistilBERT model
pre-trained on a large corpus of English text for
the task of masked language modeling (MLM).
MLM is a self-supervised NLP task where the
model is trained to predict tokens masked from
the input i.e. fill in the blanks. The pre-trained
MLM model does not have emojis in its vocabu-
lary. We add each emoji in E' to the vocabulary
and randomly initiating each emoji’s embed-
ding. We then fine-tune this model for the

MLM task on our corpus of tweets. We fine-
tune for 20 epochs with a learning rate of 5e —6
using the Adam optimizer (Kingma and Ba,
2014). We extract the embedding layer and
transformer from the MLM model and attach
a randomly initialized classification head to
create the emoji prediction model in figure 2.

We optimize our model for emojis prediction
using negative-log likelihood loss and stochastic
gradient descent. Each tweet in the training
data is parsed into input tokens and labels.
Each input token that was followed by one or
more emojis is assigned those emojis as labels.
For example, consider the following tweet: “Oh
no 2 I left the stove on () & ” This tweet
is parsed into the following list of tokens: [Oh,
no, i, left, the stove, on]. The token “no” is as-
signed an |E| dimensional multi-hot vector as
its label with a one in the position correspond-
ing to the “€2)” emoji and zeros elsewhere. The
token “on” is assigned a different label with
ones in the positions corresponding to “(=)”
and “@” and zeros elsewhere. The remain-
ing tokens are not assigned labels and are not
considered when computing the loss. In this
scheme, the emojis in the original text are not
passed as input into the model and instead are



removed and only used as labels. This prevents
the model from learning relationships between
emojis; that is, how an emoji in the input can
influence the set of relevant emojis at each to-
ken. To correct this, each emoji in the original
text has a small probability of being retained
in the input and not selected as a label. We set
this probability to 0.1 during training. This
improves the performance of the model when
emojis are in the input, however, we do not
include emojis in the input when evaluating
the transformer on the test set.

The model is trained on 490,000 tweets for
70 epochs using the with learning rates of 5e —6
for the transformer and 5e — 5 for the classi-
fication head. Again we use the Adam opti-
mizer (Kingma and Ba, 2014). Since the trans-
former is pre-trained, we expect it to produce
predictive hidden representations even before
optimizing for emoji prediction. For this rea-
son, we choose a smaller learning rate for the
transformer than for the randomly initialize
classification head. Figure 1 shows a set of
sample predictions. Section 5 gives an in depth
evaluation of the model’s performance.

4.2 Logistic Regression

The logistic regression model serves as a base-
line to compare the performance of our trans-
former model. The model predicts an |E| di-
mensional probability vector p from a bag of
words representation of the input. We inter-
pret p as the emoji predictions for the final
token in the input. For example, if the the text
”0Oh no I left the stove on” was used as input,
the output p is the set of predictions for the
token “on”. We can get predictions for the to-
ken “no” by only using the sub-string “Oh no”
as input. Using this framework, the logistic
regression model is able to make a prediction
at each token and can be directly compared to
the transformer.

To train the logistic regression model, we
break each tweet in the training set into mul-
tiple input-label pairs. We do so by splitting
the input at every occurrence of a sequence of
emojis. The text preceding the emojis is taken
as input and the set of emojis are taken as the
label.

For example, consider the tweet from before:
Oh no 2 T left the stove on () @

This tweet is split into two separate fea-

ture/label pairs. The first pair consists of the
input “Oh no” and the label set [c2]. The
second pair consists of the input “Oh no €&
I left the stove on” and the label set [, fal].
The inputs are represented as bag-of-words
embeddings that are constructed by passing
each input text into a CountVectorizer from
sklearn (Pedregosa et al., 2012) with a max-
imum vocabulary size of 5,000. A total of
150,000 training tweets are parsed into 205,508
feature-label pairs. As in the transformer, the
labels are represented as a |E| dimensional
multi-hot vector. We use the one-vs-rest strat-
egy for multi-label prediction. A separate bi-
nary logistic regression model is fitted for each
emoji. To get the prediction vector p, for each
emoji j, the corresponding logistic regression
model outputs the probability p[j] that j is
relevant.

The model is trained on 205,508 training ex-
amples. Section 5 gives an in depth evaluation
of the model’s performance.

5 Results & Discussion

We compare the performance of our models us-
ing the following metrics: precision at € = 0.5,
recall at e = 0.5, average precision, one-error,
and ranking loss (Sorower, 2010). We only
compute these metrics for positions in the text
where ground truth emojis are present. That
is, we only consider the models performance
at tokens where there are known relevant emo-
jis. Predictions for tokens with hidden relevant
emojis are not considered when evaluating. To
compute precision and recall, we count a true
positive when p;[j] > € and emoji j is relevant
for token i; a false positive when p;[j] > € and
emoji j is not relevant for token ¢; and a true
negative when p;[j] < € and emoji j is not rel-
evant for token ¢. We compute precision and
recall for each class and report both a micro
and macro average. Recall is undefined for
classes with 0 support and precision is unde-
fined for classes where p;[j] < € for all i. We
exclude such classes when computing the macro
average. We also report the average precision
(AP) for all values of e. We do not report ac-
curacy as it is overwhelmingly dominated by
true negatives.

We also evaluate our models using common
ranking metrics. At each token, we rank the



models predictions in decreasing order using
prediction vector p;. One-error (OE) computes
the percentage of tokens where the top ranked
emoji does not belong to the set of ground
truth relevant emojis. Ranking loss (RL) com-
putes the average number of emoji prediction
pairs that are incorrectly ordered in the ranking
(emojis present in the ground truth should be
ranked before emojis not in the ground truth).

Table 2 compares the results of our mod-
els. The transformer model outperforms the
logistic regression model in every metric be-
sides precision. Both models achieve much
higher precision than recall. This is caused by
the significant class imbalance in the training
data. The top 15 most frequent emojis make
up nearly 35% of all emojis in the training set.
The logistic regression model is able to achieve
higher precision by only predicting a small-
subset of emojis. Overall, the transformer is
a much better performing model and is able
to predict a much more diverse set of emo-
jis. This is seen clearly in the transformer’s
superior recall. Even still, there is a set of
infrequent emojis that the transformer never
predicts. Of the 756 emojis with support in
the validation set, the transformer only assigns
positive predictions to 539 of them.

Table 3 shows predictions for a few example
token sequences. Evaluating the relevance of
the predicted emojis is subjective. It is likely
that for many of the tokens the “true” set of
relevant emojis is empty. However, for tokens
where it is plausible that a person might write
an emoji, the predictions often seem relevant.
The transformer is particularly good at pre-
dicting emojis when a single noun is input on
its own. For example, the highest probability
prediction for “clown” is %'. Some more inter-
esting predictions are - for “rabbit”, ®® for
“love”, & for “shower”, € for “agony” and

for “enlighten”. A larger list of single noun
predictions can be found in section A.

Ethical Considerations Several emojis de-
fined by the Unicode consortium are either gen-
dered or have skin tone modifiers. We explicitly
remove skin tone and gender modifiers to help
prevent the model from learning racial or gen-
der biases that may exist in the data. However,
our model is still susceptible to learning more
subtle biases. What makes machine learning

models powerful is their ability to learn biases
and relationships. Unfortunately, some of these
biases may be contrary to a more sophisticated
moral understanding. As with all language,
emojis are not exempt from being used in hate-
ful and non-egalitarian ways. With that said,
it is indeed likely that our models have learned
morally-incorrect emoji usages.

6 Conclusion

In this paper, we train a both a DistilBERT
transformer and a logistic regression model
for the task of emoji prediction. We model
emoji prediction as information retrieval at the
level of individual tokens. That is, we expect
our model to recall the set of relevant emojis
for each token in an input text. This formula-
tion lends itself to sequence-to-sequence models.
Given a sequence of input tokens, our trans-
former outputs a sequence of predicted relevant
tokens. Despite a large class imbalance, our
transformer model is able to recall a diverse
set of emojis. We imagine our model could be
integrated into a mobile device’s keyboard to
aid users by suggesting relevant emojis upon
request.

Future Work It would be interesting to ex-
plore how pre-training DistilBERT affects the
overall performance of the model. We take an
additional pre-training step of adding emojis
to DistilBERT’s vocabulary and fine-tuning
for the MLM task. In the future we would
like to conduct an ablation study to determine
what parts of our training formulation are most
important to the performance of the model.

We would also like to train on a better corpus
of text. Tweets are not indicative of normal
text conversation. Additionally, our data set
contained a large number of spam, advertise-
ment, and bot tweets. We expect that the
model would be more useful if trained on a
more representative corpus.

Given more time, we would research and im-
plement other models such as OpenAl’s GPT-
2. The implementation of the model would
include the necessary training and testing, sim-
ilar to the BERT model. Subsequently, we
would compare the GPT-2 model to the Lo-
gistic Regression and BERT model based on
evaluation metrics considered earlier.

We imagine our model could be packaged in a



Precision.— 5

Recall.— 5

Model ) ) AP RL OE
Micro Macro Micro Macro

Transformer 0.8184 0.8439 0.4098 0.3397 0.5305 0.0375 0.5149

Logistic Regression 0.8940 0.9157 0.0870 0.0208 0.4051 0.0528 0.7675

Table 2: Results in terms of precision, recall, average precision, ranking-loss, and one-error.
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Table 3: Sample transformer sequence predictions. The top 5 predicted emojis are presented for each

token.

web-service and Android keyboard. If the user
would like to type an emoji while composing
a text, they would open an emoji view. Upon
opening the view, the model would compute a
set relevant emojis and a portion of the view
would display the predicted relevant emojis for
the token nearest the user’s text-cursor.
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A Supplemental Material

The code to train our models is publicly avail-
able on google colab !.

You can demo our trained DistilBERT model
in google colab®. Execute the entire notebook;
it will download the trained weights and the
final cell will output an interactive text-box.

1Training notebook in google colab
2Demo notebook in google colab
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Table 4: DistilBERT single word predictions



