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1 Introduction

In this report we present our approaches to all three
tasks. Section 2 covers CommonsenseQA, section
3 covers conversational entailment, and section 4
covers EAT.

2 CommonsenseQA

CommonsenseQA (Talmor et al., 2018) is a
question-answering dataset of 12,102 questions,
each with 5 multiple-choice answers. The task is
to predict the correct answer given an input ques-
tion and multiple-choice answers. We tried two
approaches for this task. The first was to fine-tune
a BERT transformer model. The second is a novel
graph neural network (GNN) based approach that
leverages knowledge from ConceptNet (Liu and
Singh, 2004). Since CommonsenseQA is derived
from ConceptNet, we believe it would be bene-
ficial to include commonsense knowledge in the
input representation. The BERT transformer out-
performed the GNN by a large margin. This is not
surprising considering that BERT is a vast model
that benefits from pre-training on a large corpus.

In this section we will briefly describe our BERT
implementation. We will then thoroughly describe
our GNN-based approach.

2.1 Bert Transformer

Our first approach is to fine-tune a BERT trans-
former. We choose bert-base-uncased
from the Hugging Face library as our BERT
encoder and used their implementation for
BERTForMultipleChoice.

The BERT transformer is pre-trained for the
masked language modeling (MLM) and next sen-
tence prediction (NSP) tasks on a large corpus
of books and Wikipedia articles. The pre-trained
model is fitted with a randomly initialized classifi-
cation head before fine-tuning.

The model is trained for 3 epochs with a batch
size of 4 (7308 iterations) using the AdamW opti-
mizer with an L2 penalty with λ = 0.01. The L2
penalty is not applied to layer norm or bias param-
eters. During the first 500 iterations of training, the
learning rate is linearly increased from 0 to 5e− 5.
The learning rate is then decreased back to 0 for the
remaining training iterations. At each iteration, the
computed gradient is clipped to have a maximum
norm of 1. This training procedure is default for the
Hugging Face Trainer class. After training, we
achieve a validation accuracy of 56.59%. We tried
other training parameters, however none improved
upon the defaults provided by Hugging Face.

2.2 Graph Neural Networks
For our second approach we use graph neural net-
works (GNNs). GNNs operate on graphs. Each
layer in a GNN uses a message passing scheme that
updates the hidden state of a vertex by aggregating
information from adjacent vertices in the graph. A
simple formula for message passing is as follows
(though there exists more general formulations):

hk+1
i = σ(Ukhki +

∑
j∈N(i)

(V khkj )) (1)

where hki is a the hidden vector representation for
vertex i at layer k,N(i) is the neighborhood around
vertex i, Uk and V k are learnable weight matrices
for layer k, and σ is some non-linear function like
ReLU.

A transformer’s attention mechanism is mathe-
matically similar to message passing and is defined
as follows:

hk+1
i =

∑
j∈S

wij(V
khkj )

where

wij = softmaxj(Qkhki ·K lhkj )



S is the set of tokens in the sequence, V , Q, and K
are learnable weight matricies, softmaxj is the soft-
max function over each token j, and · represents
the dot product. At each layer in a transformer,
the hidden state for each token is updated via a
weighted aggregation of the hidden states of the
other tokens in the sequence. Thus, we can think
of a transformer as a GNN that operates on a fully
connected graph of tokens. This leads to the ques-
tion: is a fully connected graph of tokens the best
representation for an input sequence? We think that
there is room to improve upon this representation.

CommonsenseQA relies on prior commonsense
knowledge; we can encode commonsense knowl-
edge into the input representation by augmenting
the fully connected graph representation with ver-
tices and edges extracted from ConceptNet. To
produce the augmented graph, we iterate each to-
ken in the sequence, extract each of it’s connected
concepts, and add them to the graph. To ensure
that each of our multiple choice options are in the
graph, we similarly add them as vertices and also
add each of their connected concepts. This proce-
dure quickly increases the size of our graph. To
reduce our representation to a manageable size, we
remove all vertices that only have a single neighbor.
Figure 1 shows an augmented graph representation
for a simple example.

To pass through our model, each vertex is
mapped to a learnable embedding in Rd. We might
choose the full set of ConceptNet concepts as our
vocabulary to embed each vertex; however, Con-
ceptNet has 1.8 million concepts and this would
likely produce too large of a vocabulary. We could
also try using BERT’s vocabulary to embed each
vertex. Many of the concepts from concept net
are compound words like “revolving door” or short
phrases like “going to opera”; these concepts do not
exist in BERT’s vocabulary but may provide impor-
tant information. Instead, we choose to augment
BERT’s vocabulary by adding each concept from
ConceptNet that is connected to at least 3 tokens in
BERT’s default vocabulary. This yields a vocabu-
lary of size 220,746. Using this vocabulary we can
embed each vertex to a fixed length vector. Like
BERT, the embeddings also include information
regarding the token’s type and position:

h1i = Ei + Pi + Ti

where h1i is the embedding for vertex i, Ei is the
embedding for i’s token, Pi is the embedding for i’s
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Figure 1: Graph representations for the input question
“what does a dog eat” and two multiple choice answers
“bark” and “food.” Each additional edge in the second
graph is added from ConceptNet. Blue vertices corre-
spond to concepts in ConceptNet. Green vertices cor-
respond to multiple choice answers. This is a limited
example, in reality the augmented graph would have
many more vertices. Edge type labels are omitted.

position (the position embedding is the zero vector
if the vertex is a concept not apart of the input
sequence), and Ti is the embedding for i’s type. We
use a set of three possible vertex types: Sentence if
the vertex belongs to the input sequence, Concept
if the vertex is an added concept, and Answer if the
vertex is a multiple choice answer.

Beyond embedding each vertex, we also embed
each edge in the graph. ConceptNet has various
relation types: /r/IsA, /r/PartOf, and /r/HasA are
examples. Thus, relations in ConceptNet can be
of the form “team has a coach” or “student is a
person.” These edge types provide important con-
textual information in the graph and are retained in
our representation. Edges connecting the vertices
from the original sequence are given the type /r/Sen-
tence. Like the verticies, each edge is mapped to
a learnable embedding in Rd; rather than use the
message passing formulation in equation 1, we use
a more general form that uses edge information
during aggregation (Li et al., 2020).

The embedded graph representation is passed
through a GNN encoder that genrates a hidden
feature representation for each vertex. Then, we
take the feature representations for each vertex that



corresponds to a multiple choice answer and pass
it through a densely connected predictor that pro-
duces a single value. The final prediction is then
the softmax over these values.

The specific architecture used in our experiments
is made up of 8 message passing layers. The vertex
and edge embeddings each have 64 dimensions.
Each message passing layer is followed by layer
norm and a GELU activation function. The densly
connected predictor has two linear layers separated
by a GELU.

Transfer Learning Transfer learning has been a
huge breakthrough in NLP. We think transfer learn-
ing would also be beneficial for GNNs. We pre-
train our GNN on the masked language modeling
task. We select CommonGen (Lin et al., 2019)—a
corpus of 50 thousand simple sentences—for pre-
training. Each token in each sentence is randomly
selected for masking with probability 0.15. We
then construct the input graph as before. The model
is then tasked with predicting the original token for
every masked vertex. We train using the AdamW
optimizer and a fixed learning rate of 1e− 3. After
41 epochs of training the model is able to correctly
predict the masked token about 37% of the time on
a held out validation set.

Experiments & Evaluation We train on Com-
monsenseQA for 3 epochs using a batch size of 64.
Again we use the AdamW optimizer and a fixed
learning rate of 1e − 3. We apply the L2 penalty
with λ = 0.01. We achieve a validation accuracy of
28.58% when staring from a randomly initialized
model. Surprisingly, using the pre-trained model
was detrimental to performance and only achieved
an accuracy 25.96%.

Since each question has 5 multiple choice an-
swers, chance performance is 20%. Thus, both
models perform better than chance. One of the
choices is a human-generated distractor answer
not sampled from ConceptNet. Eliminating this
choice would put chance performance at 25%. It is
possible that our input representation makes it easy
for the model to eliminate the distractor and the
model only performs marginally better than chance
prediction.

Issues & Future Work. Our GNN model did not
perform that well. This is in part because of the
limited number of training examples in Common-
senseQA. Although our pre-training experiment
did not improve performance, we still believe that

pre-training on a larger scale would be beneficial.
Many ad-hoc decisions were made when con-

structing the vocabulary and model architecture.
In the future we would like to try different archi-
tectures and message passing formulations; graph
attention (Veličković et al., 2018) might be a good
fit since it is are more similar to transformer atten-
tion. Also, there is likely a better way to embed
compound-word and phrase concepts like “revolv-
ing door” or “going to opera” rather than adding
them to the vocabulary. For example, it might be
better to tokenize the concept first using the de-
fault BERT tokenizer, then take the average embed-
ding among all tokens in the compound-word or
phrase. Currently, 17.36% of questions in Com-
monsenseQA have an answer that does not belong
to our vocabulary. A better scheme for embedding
concepts could alleviate this problem.

We would also like to try easier NLP tasks first
before language understanding tasks. We achieve
good performance for MLM which suggests that
our approach may be viable for other tasks.

We should also conduct an ablation study where
we only use the fully connected graph of tokens
from the input sequence; this would help in deter-
mining the value of adding concepts to the input
graph.

Overall we are happy with the GNN’s perfor-
mance, but there is a lot of room for improvement.

3 Conversational Entailment

Conversational entailment is an entailment task
where the premise is a dialog between two speakers.
In this section we describe two approaches for con-
versational entailment. In the first approach we use
SBERT (Reimers and Gurevych, 2019). SBERT is
a Siamese network that leverages BERT transform-
ers. In the second approach we fine-tune RoBERTa.
RoBERTa performs best among the two approaches.
We experience difficulties getting SBERT to con-
sistently converge. We also find that it is crucial to
encode speaker information in the model’s input.

3.1 SBERT

SBERT is a Siamese network that separately en-
codes two sequences using two BERT transform-
ers. The encoded sequences are joined together and
used as input for a softmax classifier that makes a
prediction. The structure of the model is shown in
figure 2. We use SBERT for entailment by having
the first BERT transformer encodes the premise



Figure 2: SBERT. The input dialog is concatenated and
encoded by the transformer on the left. The hypothe-
sis is encoded by the transformer on the right. Both
transformers share the same weights.

and the second BERT transformer encodes the hy-
pothesis. Both BERT encodings are pooled to fixed
length embeddings. The embeddings are joined
and used as input for a softmax classifier which
predicts an entailment label. To prepare a dialog
for SBERT, we concatenated all utterances into a
single sequence to use as the premise. The hypoth-
esis remains unchanged. This input representation
does not include any information about the speak-
ers.

Results To evaluate, we split the dataset into
training and validation sets. We were unable to get
SBERT to consistently converge. The validation
accuracies ranged from 55% to 63% depending on
the specific training and validation split. This is not
bad performance, however, in many experiments
the models performance failed to improve while
training. We think that to get better performance
with this model, we should encode speaker infor-
mation in the input and more exhaustively search
for good hyper-parameters.

3.2 RoBERTa

For our second approach we fine-tune RoBERTa.
We choose roberta-large-mnli from

the Hugging Face library. This model is pre-
trained on the MultiNLI textual entailment
corpus (Williams et al., 2018). This pre-training
task is well suited for transfer learning on
other natural language understanding tasks. We
rely on Hugging Face’s implementation for
RobertaForSequenceClassification.
The input to the model is created by concatenating
each turn in the input dialog. We include speaker
information directly by converting each dialog
turn into the following format: “Speaker[A/B] said
‘[dialog turn]”’. The hypothesis is added at the
end of the sequence after a separator token. For
example the dialog in figure 3 would be converted
to the following input sequence:

SpeakerA said “Do you like to read?”
SpeakerB said “Yes I do” 〈/s〉 SpeakerA
likes to read

The model is tasked with making a binary entail-
ment prediction on the whole sequence.

Experiments & Evaluation We train the model
for 8 epochs with a batch size of 6 (608 iterations).
We use the AdamW optimizer and an L2 penalty
with λ = 0.01. The L2 penalty is not applied to
bias or layer norm parameters. We use different
learning rates for the RoBERTa encoder and the
classification head. For the first 2 epochs the learn-
ing rates are linearly increased from 0 to 1e − 4
and 1e− 8 for the classification head and encoder
respectively. The learning rates are then linearly
decreased to zero for the remaining iterations. The
intuition for using a smaller learning rate on the
encoder is that the encoder starts with a good pre-
trained initialization; thus, the weights in the en-
coder should be able to adapt to new tasks with
smaller updates than the final classification layers.
To evaulate our model, we perform 3-fold cross-
validation and record accuracy for each fold. Our
model achieves a macro average accuracy across
the 3 folds of 74.05%.

Including the speaker information in the input is
crucial for performance. Without speaker informa-
tion (simply concatenating dialog turns), the model
only achieves a macro average accuracy of 67.70%.
This is not surprising. Consider the example in
figure 3. In this example the hypothesis does not
entail the dialog since speaker A does not say if she
likes to read. This example would be impossible
to distinguish without speaker information. Other
examples in the corpus are similarly undecidable



A: Do you like to read?
B: Yes I do.
Hypothesis: SpeakerA likes to read

Figure 3: Example conversational entailment input.

without contextual information about the speak-
ers. For future work, there is likely more clever
ways of encoding speaker information rather than
augmenting the input.

4 EAT (Everyday Actions in Text)

The EAT dataset consists of 1044 short stories, la-
belled as plausible and implausible. The implausi-
ble stories have further labels which indicate when
the stories stop making sense. The task at hand is
to predict the label and breakpoint for stories not
previously seen by the model.

We randomly split the dataset into training and
validation sets of 944 and 100 stories respectively.

4.1 First Attempt at Baseline Models

Our first approach is to split the task into 2 indepen-
dent sub-problems—first to train a binary classifier
which predicts if a given story makes sense or not,
followed by a multi-class classifier which predicts
the breakpoint for stories deemed as implausible
by the first model.

We trained many different models for the first
task. We implemented many sequence classi-
fication models with various pretrained config-
urations of BERT variants, and trained a clas-
sification layer on top of these models to fine
tune to our task. Some of the pretrained
models we used were bert-base-uncased,
xlnet-base-cased and roberta-base
among others. We simply took the stories as they
were, adding the appropriate classification label
and concatenating them with the appropriate sepa-
rator tokens according to the pretrained model.

For the second task of predicting breakpoints, we
trained similar models as above. The dataset con-
sisted of only implausible stories, with the break-
point as ground truths.

However, the best accuracy for the first tasks
was a little under 60% and for breakpoint predic-
tion was a little over 30%. Both models were per-
forming only slightly better than chance, and this
was not acceptable. We needed high accuracy in
label prediction for the breakpoint prediction to
make any sense at all, and a pipeline with such

low-accuracy models was bound to perform poorly.
We decided to abandon this approach.

4.2 Digging into the Dataset
After the first failed attempt at building a decent
baseline model, we decided to take a closer look at
the dataset. Looking at figure 4 it is clear that the
dataset is heavily skewed, which partly explains
why our first approach failed. Although the labels
are evenly distributed, the breakpoints within the
implausible stories are not, and we think the model
failed to capture this trend.

Taking a closer look at some of the stories, we
see a lot of repeated stories in which just one
sentence is changed, which changes the semantics
of the sentence and make the story implausible.
For example, here are two such stories:

Plausible story:

0. Ann sat down on the couch.

1. Ann reached for the cellphone on the table.

2. Ann knocked her coffee off the table.

3. Ann got some cleaning supplies to clean up
the mess.

4. Ann scrubbed at the coffee stain.

Implausible story:

0. Ann sat down on the couch.

1. Ann reached for the cellphone on the table.

2. Ann knocked her coffee off the table.

3. Ann got some cleaning supplies to clean up
the mess.

4. Ann drank her coffee.

Most stories had such plausible and implausible
counterparts. The implausible story in the above
example has a breakpoint at sentence 4, however
the challenging aspect is the skewed distribution of
the breakpoints among implausible stories.

Our new intuition is that for any model to accu-
rately predict plausibility, it must be able to implic-
itly predict the breakpoint. This gives us a tight
dependency between the two seemingly indepen-
dent tasks and forces us to rethink our approach
to the problem. We can no longer try the pipeline
approach of first predicting plausibility. Our main
takeaways from this analysis are:



(a) Distribution of Labels in Training
Data

(b) Distribution of Breakpoints in
Training Data

(c) Distribution of Breakpoints in
Implausible Stories

Figure 4: Label and breakpoint distributions for EAT.

1. Do not underestimate the inherent complexity
of the task

2. The EAT dataset has very few examples and
many examples are very similar

3. Blindly applying BERT variants does not give
meaningful results

4. Both sub-tasks are tightly dependent

5. Approaches predicting labels before break-
points are bound to fail

4.3 A Better Approach

We were desperate.
We needed more data.
We needed a working model.

We flipped our first approach.

A closer look at the dataset reveals that even
for implausible stories, the story formed before
the breakpoint is plausible (and this is true for all
sub-stories before the breakpoint). Armed with
this revelation, we split each story into many sub-
stories. A plausible story, say of length 5, is split
into 4 plausible sub-stories. Length one stories are
not included as they are never implausible. For
implausible stories, we try two approaches. For
the first approach, each sub-story is created and all

stories which contain the breakpoint are marked im-
plausible. For the second approach, we discard sub-
stories that include sentences after the breakpoint.
This increases the size of the dataset by almost 3-4
times, although the lengths of the implausible sto-
ries are still biased towards longer stories (which
follows from the breakpoint distribution).

We then train a model to predict if the last sen-
tence in an input story aligns with the prior; this is
similar to textual entailment. We predict the break-
point as the first non-sense sentence that is found,
and report no breakpoint (-1) if no non-sense sen-
tence is found. The new approach converts the
multi-class breakpoint classification into a binary
classification and eliminates the need to predict
plausibility of the complete story.

We train bert-base-uncased for this task
and achieve 52% accuracy (macro F-1 score) for
breakpoint prediction (much better than chance).
The confusion matrix in figure 5 sums up our re-
sults.

While this model shows promise, it comes with
it’s own baggage. This model is cheating.

1. The model is biased towards predicting
no breakpoint, possibly because our story-
splitting approach introduces more bias to-
wards plausible stories

2. The model predicts no-breakpoint more often
for stories with a breakpoint at 3 or 4



Figure 5: Breakpoint prediction confusion matrix for
bert-base-uncased. The y axis shows the ground
truth breakpoint. The x axis is the models prediction. -1
corresponds to no breakpoint (story is plausible).

3. For a large number of plausible stories, the
model predicts the breakpoint at sentence 4—
essentially performing worse than chance for
breakpoint 4

Although we were expecting points 1 and 2,
point 3 took us by surprise, especially because
breakpoint 4 is the most common breakpoint—and
we just cannot afford such a poor performance on
breakpoint 4.

4.4 Enter RoBERTa + MNLI

The next natural progression is to try bigger and
better pretrained models, especially focusing on
models trained on other language understanding
tasks.

We try bert-base-mnli, Facebook’s
bart-large-mnli (Lewis et al., 2019) and
Hugging Face’s roberta-large-mnli.
While the BERT and the BART variants tanked,
RoBERTa showed a significant improvement.
Figures 6 and 7 show RoBERTa’s performance.
Figure 7 shows a considerable improvement over
the BERT baseline in figure 5. RoBERTa is not
overly biased towards predicting no-breakpoint,
performs well for breakpoint 4, and also predicts
breakpoint 5 correctly (only a few examples in
the dataset have breakpoint 5, breakpoint 5 is not
included in the confusion matrix). These results
show that the model is no longer cheating and is
able to accurately predict breakpoints for different
length stories.

Score Label Breakpoint

F-1 0.9 0.8893
Recall 0.9014 0.8714

Precision 0.9014 0.9173

Figure 6: Plausibility prediction confusion matrix for
RoBERTa. The y axis shows the ground truth label.
The x axis is the models prediction. Label 0 corre-
sponds to implausible, 1 is plausible.

Figure 7: Breakpoint prediction confusion matrix for
RoBERTa. The y axis shows the ground truth break-
point. The x axis is the models prediction. -1 corre-
sponds to no breakpoint (story is plausible).

5 Conclusion

Overall, we were able to achieve good performance
on all three tasks; pre-trained transformers proved
to be superior in all cases. This is not surprising
since they are the current state-of-the-art in NLP.
We have learned that blindly applying transform-
ers will not solve all NLP problems; instead, it
is important to carefully consider the dataset and
approach.
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