
EECS504 Final Report: Optical Flow Estimation using PWC-Net

Brian Purnomo
brianpur@umich.edu

Chengyang Huang
chengyah@umich.edu

Drake Svoboda
drakes@umich.edu

Abstract

In this paper, we implement a smaller variant of PWC-
Net [1], a CNN model for optical flow estimation. We also
propose a novel improvement to PWC-Net’s warping layer.
Deep optical flow methods often get stuck at poor local min-
ima early in training [1]. We believe that this is caused by
the warping layer adding noise to the features of the sec-
ond image early in training when the flow predictions are
poor. Our modification to the warping layer corrects this
and improves training stability. We compare our results to
the classical Gunner-Farneback [2] and Pyramidal Lucas-
Kanade [3] algorithms. Our implementation out-performs
these baselines; however, our simplification of the model as
well as reduced training time results in worse performance
than PWC-Net’s reported results.

1. Introduction

Optical flow estimation is an important computer vision
problem. Optical flow arises from the relative motion of
objects in a scene and the viewer [4]. Optical flow can re-
veal important information about the spatial location and
velocity of these objects. Some application of optical flow
include object segmentation [5], object tracking [6], au-
tonomous vehicle navigation [7], and visual odometry [8].
As optical flow estimation has proven to be an important
problem, much research has been done to improve flow es-
timation accuracy and computational speed.

We re-implement PWC-Net, a recent landmark optical
flow model. PWC-Net borrows many principals from clas-
sical coarse-to-fine flow methods such as Pyramid Lucas-
Kanade [3]. PWC-Net improves upon the performance of
classical methods by leveraging the representational power
of CNNs.

Our implementation of PWC-Net matches the original
except that we use one fewer pyramid levels and we use a
novel modification to the warping layer that improves train-
ing stability.

2. Related Works
Energy Minimization Approach. Horn and Schunck de-
fine flow estimation as an energy minimization problem and
solve it using a variational inference approach [4]. Since
Horn and Schunck introduced their method, many more en-
ergy minimization methods have been proposed [9, 10, 11].
Lucas and Kanade use a differential method that assumes
the displacement of the objects between two subsequent
frames is small and approximately constant within a neigh-
borhood of the pixel under consideration [12, 13]. Gun-
nar proposes a method to estimate displacement fields from
the polynomial expansion coefficients [14]. A coarse-to-
fine scheme and warping-based approach is often adopted to
avoid expensive computation [15]. Although energy mini-
mization methods are able to estimate flow precisely, the ex-
pensive computational requirements impede their adoption
for real-time applications such as self-driving and robotics.

Deep learning Approach. Recently, convolutional neural
networks have become popular for estimating optical flow
because they can both accurately predict optical flow and
reduce solving time—sometimes by a factor of 100—when
compared to energy minimization approaches. FlowNet in-
troduces a paradigm shift towards CNNs for flow estima-
tion [16]. Flownet-2 improves upon Flownet by stacking
multiple networks to iteratively refine the estimated flow
and introducing a differentiable warping operation to com-
pensate for large displacements [17]. SpyNet proposes a
spatial pyramid network in order to reduce the model size
at the cost of estimation performance [18]. To balance
model size and estimation accuracy, PWC-Net combines
traditional pyramid processing into a CNN based model [1].

Mixed Approach. The current leading method on the
KITTI benchmark is UberATG-DRISF[19], whose flow
module is akin to PWC-Net[1]. Ma et al. formulate the flow
estimation problem as energy minimization in a deep struc-
tured model, which can be solved efficiently in the GPU
by unrolling a Gaussian-Newton solver. They propose a
novel deep rigid instance scene flow (DRISF) model that
post-processes the flow estimation and eliminates the draw-
back of the deep learning based methods. Although it slows
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down the running time, it reduces the average percentage of
outliers by half.

3. Method
Figure 1 shows the complete structure of our implemen-

tation of PWC-Net. PWC-Net borrows many principals
traditional coarse-to-fine optical flow estimation methods.
First, a learnable feature pyramid representation of the two
images is constructed using a shared CNN. The model es-
timates flow at each pyramid level using a sepearate CNN
called an optical flow estimator. At each level, the features
of the second image are warped using the up-sampled flow
prediction from the previous level. After warping, the fea-
tures of the first image and the warped features of the second
image are passed through a cost-volume layer. The optical
flow estimator take as input a concatenation of the features
of the first image, the cost-volume, and the up-sampled flow
prediction from the previous layer. At the lowest level in the
pyramid, the flow prediction is considered to be all zero. At
the final level, the flow prediction is post-processed by a
CNN called the context network.

Our implementation follows the original implementation
except for a few subtle changes. In particular, we remove
a level from the feature pyramid extractor and modify the
warping layer in a novel way to improve stability at the be-
ginning of training.

Figure 1: PWC-Net. Image taken from [1]

Feature pyramid. Given two images I1 and I2, we gen-
erate a L-level feature pyramid using a shared CNN. The
bottom most level is the input image. Call cl1 and cl2 the
features for the two images at the lth level of the pyramid.
cl1 and cl2 are computed using convolutions filters that down
sample the features from the previous level by a factor of 2.
The original PWC-net implementation uses 7-Levels with 3,
16, 32, 64, 96, 128 and 196 channels respectively. We omit
the final pyramid level and downsample the input image by
a factor of 2 using bilinear interpolation. Thus, we have a 6-
level pyramid with 3, 16, 32, 64, 96, and 128 channels that

takes half-resolution images as input when compared to the
original.

Warping layer. At each level l, the features from the sec-
ond image are warped using the up-sampled flow prediction
from the l + 1th level. Define clw as the warped features of
the second image at the lth level

At the very beginning of training, we warp the second
image’s features using a weighted average of the ground
truth flow and the upsampled flow prediction from the l+1th
level:

clw = cl2(x+
α1w

l+1
UP (x) + α2w

l
GT (x)

α1 + α2
) (1)

where wl+1
UP is the up-sampled predicted flow from the

l+1th level andwl
GT is the ground truth flow down-sampled

and scaled to match the dimensions at the lth level. For the
first several epochs of training α1 is set to 0 and α2 to 1.
This warps the features using only the ground truth flow. As
training progresses, α2 is decreased and α1 is increased un-
til α1 = 1 and α2 = 0. At this point, the features are warped
as in the original implementation (without the ground truth
flow):

clw = cl2(x+ wl+1
UP (x)) (2)

We empirically find that this modification to the warping
layer improves training stability at the beginning of training.
The original authors note that deeper optical flow estimators
often get stuck at poor local minima early in training [1].
We believe that this problem is in part caused by the warp-
ing layer adding noise to the features of the second image.
If the flow prediction from the previous level is not accurate,
as it is at the very beginning of training since the model is
randomly initialized, the warping operation adds noise to
the features of the second image and hurts the model’s pre-
dictive power. Our novel warping scheme corrects this issue
by using the non-noisy ground truth flow at the beginning
of training. The model is then weaned off the ground truth
flow as each level begins to make better flow predictions.

Cost volume layer. The warped features are used to com-
pute a “cost-volume” by passing the features from the first
image and the warped features from second image through
a correlation layer:

CVl(X1,X2) =
1

N
〈cl1(X1), clw(X2)〉 (3)

where 〈, 〉 is the dot product and N = dim(cl1(X1)).
For computation efficiency, the displacement of the cor-

relation is limited to a 9 × 9 region. That is, for each
Cl×1×1 vector in the first image’s feature map (where Cl
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is the number of channels at that pyramid level), the correla-
tion layer computes the dot product of that vector and every
Cl× 1× 1 vector in a 9× 9 region centered at that location
in the warped features of the second image. This produces
81 scalars for each position. These scalars are concatenated
to produce the 81 × H l ×W l cost-volume representation
where H l and W l is the height and with at the lth pyramid
level. The original authors find that the cost-volume repre-
sentation significantly improves performance [1].

Optical flow estimator. The optical flow estimator for
level l is a multi-layer CNN that takes as input the cost-
volume, the features from the first image at level l, and the
up-sampled optical flow at the the l+1th level. Each estima-
tor has 5 convolutional layers with 128, 128, 96, 64 and 32
features. Each estimator makes a 2×H l×W l flow predic-
tion. The flow prediction is made at 1/20th the magnitude
of the ground truth flow. That is, to retrieve the models fi-
nal prediction, the output of the optical flow estimator must
be scaled by a factor of 20. The original PWC-Net paper
evaluates two implementations, one with DenseNet connec-
tions in the optical flow estimator and one without [20]. We
omit the DenseNet connections in favor of computational
efficiency.

Context network. Classical flow methods often post-
process flow predictions using contextual information [21,
22]. PWC-net uses a context network to refine the predicted
flow at a given pyramid level. The context network is a
multi-level CNN that takes as input the predicted flow and
the features from the previous level’s flow estimator and
computes the residual flow used to refine the flow predic-
tion.

The context network is only used for the highest level
flow prediction. It makes use of dilated convolutions layers
to expand it’s receptive field. Our implementation matches
the original.

Training loss. PWC-Net makes flow predictions at each
pyramid level. The ground truth flow is used as a learning
signal at each level. We use the same loss as in the orig-
inal PWC-Net implementation; however, we omit the L2
penalty term. In particular, we use

L(Θ) =

L∑
l=l0

αl

∑
X

|wl
Θ −wl

GT |2 (4)

where αl is the weight for level l, wl
Θ is the predicted

flow and wl
GT is the ground truth flow down-sampled us-

ing bilinear interpolation to match the dimension of the pre-
dicted flow at level l. Note that the magnitude of the ground
truth is not scaled when down-sampling, thus, each level
predicts flow at the same magnitude.

Additionally, we use the following robust loss when fine-
tuning:

L(Θ) =

L∑
l=l0

αl

∑
X

(|wl
Θ −wl

GT |1 + ε)q + γ|Θ|2 (5)

4. Experiments
4.1. Data

FlyingChairs The FlyingChairs dataset is a staple train-
ing dataset for many optical flow networks [23]. It con-
tains 22872 synthetic training examples created by render-
ing 3D chair models over 964 Flickr images of various
cities, landscapes and mountains. Each training example
consists of two images and the corresponding ground-truth
optical flow. We select a sub-set of FlyingChairs for train-
ing. We prepare the data into pre-defined mini-batches that
are loaded into Colab through Google Drive. Using pre-
defined mini-batches allows us to overcome an I/O bottle-
neck in the Google Colab/Drive environment by compress-
ing each minibatch into the H5 file format; however, this
reduces the amount of variation the model is able to see
during training. We choose a random a crop of 448 by 384
then down-sample by half for each training example. We
then down-sample the examples by half before preparing
pre-defined mini-batches. When down-sampling, we were
careful to account for the change in the magnitude of the
ground-truth flow.

KITTI The KITTI optical flow dataset contains 200 train-
ing examples obtained by cameras mounted inside of a vehi-
cle while driving [24]. KITTI contains examples with var-
ious lighting conditions captured when the car was either
stationary or moving. We randomly split the 200 exam-
ples into training and test sets of 100 examples each. The
ground-truth annotations in KITTI are semi-dense. That is,
the ground-truth flow is only provided for a subset of pixels
in the scene. Our evaluation only considers pixels where
there are ground-truth annotations.

4.2. Training Setup

We randomly initialize our model and train on Fly-
ingChairs before fine-tuning on KITTI.

FlyingChairs We trained the network on the Fly-
ingChairs dataset using a batch size of 8 as suggested in
the original paper. The training loss (4) was used with
α2 = 0.32, α3 = 0.08, α4 = 0.02, and α5 = 0.01. We use
the Adam optimizer with learning rate of 1e−4. The model
was trained on the FlyingChairs dataset for 577 epochs; this
took around 2 days.
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KITTI While fine tuning our model on KITTI, we used
a batch size of 4. At each training step we take a ran-
dom crop of 320 by 896 and randomly horizontally flip
with probability 0.5. When flipping the image, we are also
careful to flip the horizontal component of the flow. As in
FlyingChairs, we down-sampled the images by half to re-
duce training time. The training loss (5) was used with
α2 = 0.32, α3 = 0.08, α4 = 0.02, α5 = 0.01, q = 0.4
and γ = 0.01. Again we use the Adam optimizer was used
with a learning rate of 1e− 4. Since KITTI has semi-dense
ground-truth annotation, the training loss is only calculated
for pixels where the ground-truth is known.

4.3. Evaluation

Baseline approaches. We select the Gunner-Farneback
algorithm implemented by Opencv (Opencv-GF) [14],
Pyramid-LK [13], and PWC-Net [1] implemented by
Nvidia as baselines to evaluate our model against. Although
the performance of Opencv-GF and Pyramid-LK are be-
low the current state-of-the-art, Opencv-GF and Pyramid-
LK are very classic and widely used methods for dense op-
tical flow estimation. Because our PWC-Net is simplified,
its performance is expected to be below the state-of-the-art,
and we believe it is reasonable to compare with these classic
methods. The PWC-Net implemented by Nvidia is selected
to evaluate the degradation due to our simplifications and
limited training time.

Evaluation metrics and methods. There are three ma-
jor evaluation metrics, Percentage of flow outliers (Fl-all)
in non-occluded pixels, Average end-point error (AEPE),
and running time. Because the KITTI 2015 does not make
ground-truth labels for its test set publicly available, we di-
vide the training set evenly into a 100 example training set
and a 100 example test. The reported numbers for Nvidia’s
implementation of PWC-Net are for the official KITTI test
set instead of our custom test set; however, we still believe
we can make a meaningful comparison despite this. Table
1 shows a comparison of the baselines and our implemen-
tation. Figures 2 and 3 show prediction examples when the
camera is stationary and moving.

Performance. Our PWC-Net outperforms Opencv-GF
and Pyramid-LK on our KITTI test set. Table 1 shows that
our PWC-Net has less average end-point error than Opencv-
GF and Pyramid-LK, which suggests that our PWC-Net is
able to estimate the flow more accurately than these two
baseline methods. The percentage of flow outliers of our
PWC-Net is lower than Opencv-GF, but slightly higher than
Pyramid-LK. In the aspect of running time, our PWC-Net
is 220 times faster than Pyramid-LK and 3 times faster than
the Opencv-GF, when dealing with images in the same size.

Therefore, our PWC-Net is able to achieve a lower error
with improved inference time.

PWC-Net-Nvidia is Nvidia’s PWC-Net without fine-
tuning on KITTI (with only the pre-training step). Our
implementation has less average end-point error than this
model mainly because our model fine tunes on KITTI 2015
data set. We also predict flow at half the resolution leading
to relatively denser ground-truth annotations and smaller
average error. However, the fine-tuned PWC-Net by Ni-
vidia (PWC-Net-Nvidia-ft) has a much lower average error.
The percentage of flow outliers of our PWC-Net is higher
than both models, which indicates that our PWC-Net is still
unable to track the moving object precisely. The inference
time is not comparable because the input image size and
the hardware are different. Our results suggest that further
training is necessary to improve accuracy and simplifying
PWC-Net will degrade performance.

Table 1: Results on evaluation set separated from KITTI
2015 training set

Methods AEPE Fl-all Time (s)

Opencv-GF 6.84 55.2% 0.03
Pyramid-LK 5.93 48.1% 2.20

PWC-Net 5.74 50.8% 0.01
PWC-Net-Nvidia [1] 10.35 33.7% 0.03

PWC-Net-Nvidia-ft [1] 2.16 6.12% 0.03

Figure 2 shows that, when the camera is stationary, the
flow estimation from our PWC-Net is more clear and less
noisy. It captures all three cars in the scene accurately, al-
though it predicts the speed of the background incorrectly.
When the camera is moving in figure 3, it can be seen that
the Opencv-GF and Pyramid-LK do not have clear flow es-
timation contour, while the flow estimation from our PWC-
Net is more close to the ground truth label. It is more chal-
lenging for the traditional method when the camera is mov-
ing because they rely on the assumption that the movement
between two frames should be small.

5. Conclusions
PWC-Net made a substantial contribution in using CNNs

to estimate optical flow. In our version of PWC-Net, we
reduce the size of the model by removing a pyramid level
and cutting the dense connections in the estimator layer.
In addition, we make a novel improvement to the warping
layer that prevents the model from getting stuck at poor lo-
cal minima early in the training. Though we were not able
to train our network as long as the original PWC-Net, the
results seems to be satisfactory as we have a lower aver-
age endpoint error than both the Pyramidal Lucas Kanade
and Gunner-Farneback algorithms. One weakness of our
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(a) First frame (b) Second frame (c) Ground truth

(d) Opencv-GF (e) Pyramid-LK (f) PWC-Net

Figure 2: Visual results on evaluation set separated from KITTI 2015 training set using Opencv-GF, Pyramid-LK, PWC-Net,
when the camera is stationary

(a) First frame (b) Second frame (c) Ground truth

(d) Opencv-GF (e) Pyramid-LK (f) PWC-Net

Figure 3: Visual results on evaluation set separated from KITTI 2015 training set using Opencv-GF, Pyramid-LK, PWC-Net,
when the camera is moving

network was that the results has a slightly higher percent-
age of flow outliers on non-occluded pixels of 2.7% com-
pared to the Lucas Kanade baseline. Though, this seems
to be the cost of simplifying the network and not having
enough training. We believe that by more closely matching
the training specification in the original paper our perfor-
mance could be significantly improved. We would also like
to test our model on the the Sintel optical flow dataset [25]
which is another popular optical flow dataset.
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